学年

教科

質問の種類

数学 高校生

2の(3)の解説に線を引いた部分がわからないです

実 擬力 Date k=2が2直 テスト2 2次 2 13 ①と問題を比較をして, a, b, c, 2+ 4+ 13 dの値を探しましょう. 1 1 1 1 a+ 2+ 1 2+ ⑥ + 1 1 1 4+ C+ 3 d 以上より 傾きを求めて y=ax+b に代入 y切片を求めて完成してもよい 点A(-3, 9), C (4, 16) を通 (4,16) る直線 C y-9=- 9-16 -3-4 {x-(-3)}より A (-3, 9) B(1,1) y=x+12 0 a=2,b=2,c=4,d=3 となります。 点B(1, 1), 点C (4, 16) を通る ② x = 2 答え: α = 2,6= 2,c=4,d=3 直線 y-1= 1-16 1-4 (x-1)よりy= 5x-4 2 解答・解説 2 右図の斜線部分に含まれる点 (x,y)でx,yともに整数となる ものについて考える。 周上の点 も含むと考え、次の問いに答え なさい。 y=x2 (4, 16 A 今回の題意からx, yが共に整数であることを踏まえて, x=2の直線 上にあるyの値に着目します (図の赤い部分). すなわち "x=2と直 ②の交点”以上 "x=2と直線の交点” 以下にあるyの整数値の 個数より 5×2-4≦y≦2+12 ②にx=2を代入 ①にx=2を代入 これより6≦y≦14 (-3, 9) B(1, 0 この範囲でyの値が整数になるのは y=6,7,8,9,10,11,12,13, 14の合計9個. (2)直線上には何個ありますか。 ◆解答・解説◆ (2) 地道に数えていくのも1つの方法ですが、今回は計算で解いてみま (3) 斜線部分内には何個ありますか。 す.x=2が2直線と交わるのでその交点のy座標に着目します。 2点(x1,y1)(x2,y2)を通る直線の求め方は y-y1= y-y2 -(x-x1) X1-X2 で求められる. ので、 05 ◆解答・解説 答え: 9個 (3)(2)の解き方を応用して x=-3からx=4までについて」が整数値 をとる個数を計算で出してみましょう. A(-3, 9),B(1,1) 84 85

回答募集中 回答数: 0
数学 高校生

この問題の(3)の解説(2ページの丸で囲んでる部分がよくわからないです… 何故Xの得点は(2-5)と(8-5)ばかりなのでしょうか? 3点や4点もグラフにあるのに何故省かれているのでしょう、、 教えてください!

step2 鉄則を使う 下の表Ⅰは、20人の生徒が行った2つのゲームX,Yの得点結果をまとめたものである。 表の横軸はXの得 点を,縦軸はYの得点を表し、表中の数値は,Xの得点とYの得点の組み合わせに対応する人数を表している。 ただし,得点は0以上10以下の整数値をとり、空欄は0人であることを表している。例えば,Xの得点が 6点でYの得点が7点である生徒の人数は2である。 また,IIはXとYの得点の平均値と分散をまとめたものである。 ただし, 表の数値はすべて正確な値であり、 四捨五入されていない。 以下,小数の形で解答する場合は、指定された桁まで解答せよ。 #I 表Ⅱ (点) 10 X Y 9 1 8 7 2 232211 2 平均値 A 6 2 1 分散 4.00 7.0 B Y 5 4 1 3 2 1 0 012345 6 7 8 9 10 X (点) (1)20人のうち, Xの得点が5点の生徒はア人であり, Yの得点がXの得点以下の生徒はイ人である。 . (2)20人について, Xの得点の平均値Aはウ エ点であり,Yの得点の分散Bの値はオ である。 カキ (3)20人のうち, Xの得点が平均値 ウ エ点と異なり,かつ, Yの得点も平均値 7.0点と異なる生徒 はク人である。 20人について, Xの得点とYの得点の相関係数の値はケコサシである。 ア( ( ウ エ オ( )力( キ ク( ケ ( ) コ サ ) シ(

回答募集中 回答数: 0
数学 高校生

総数を求める時何故割り算するのかと 合計者を掛け算で求める理由がわからないので教えて下さい!

31² 整数値で 分布 正規分布 21 ある試験での成績の結果は, 平均 71 点,標準偏差 8点であった。得点の分布は正規分布 に従うものとするとき,次の問いに答えよ。 標準偏差 15点 Y N (0, 1) に従う。 (1) 63点から 87点のものが450人いた。 受験者の総数は約何人か。 のとき,合格点を 55 点とすると,約何人が合格することになるか。 (解説) X-71 得点Xが正規分布 N (71,82) に従うとき, Z=- 8 (1) X = 63 のとき Z = -1, X = 87 のとき Z = 2 であるから P(63≦X≦87)=P(−1≦Z≦2)=P(−1≦Z≦0)+P(0≦Z2 =p(1) +p(2) = 0.3413+0.4772=0.8185 よって、受験者の総数は したがって 450÷0.8185=549.7...... 約550人 よって, 合格者の人数は (2) X = 55 のときZ=-2であるから P(X≧55)=P(Z≧-2)=0.5+p(2)=0.5+0.4772=0.9772 TO1)に従う確率変数 71 したがって .00 549.7×0.9772 = 537.1...... 約 537 人 正規分布表 .01 0.6 0.2257 0.7 0.2580 0.8 0.2881 0.9 0.3159 1.0 0.3413 0.3438 1.1 0.3643 0.3665 .04 .03 .02 4.05 0.3461 は標準正規分布 N(0, 1) に従う。 .06 0.2357 0.2291 0.2324 0.2642 0.2673 0.2611 0.3023 0.3051 0.2967 0.2939 0.2910 0.3186 0.3212 0.3238 0.2389 0.2704 0.2995 0.3264 0.3289 0.3315 0.0 10.00000.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.2 0.0793 0.0632 0.0871 20.1406 0.1443 0.1480 0.1517 0.1331 0.1368 0.1255 0.1293 0.3 0.1179 0.1217 0.1591 0.4 0.1554 20.1626 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.21900.2224 0.2422 0.2454 02466 0.25170.2549 0.2734 0.2764 0.2794 0.2823 .07 y ↑ .08 0.3531 0.3508 .09 20.2852 0.3078 0.3106 0.3133 0.3340 0.3365 0.3389 0.3554 0.3577 0.3599 0.3621 0.3485 20.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

回答募集中 回答数: 0
1/8