学年

教科

質問の種類

数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

回答募集中 回答数: 0
数学 高校生

加法定理の問題です。 画像の線を引いてあるところがわからないので、解説お願いしたいです。 よろしくお願いします。

第2問 (必答問題) (配点 15 太郎さんは、ボールをゴールに蹴り込むゲー ムに参加した。 そのゲームは、 右の図1のように地点 0か ら地点Dに向かって転がしたボールを線分 OD上の1点からゴールに向かって蹴り 地点 Aから地点Bまでの範囲にボールが飛び込んだ とき,ゴールしたことにするというものであっ B 3m ル ボールが転がされ、 ボールを蹴るライン A 3mi 2m 0 9m 図1 た。 ただし, ボールは点とみなし, 大きさは考えないものとする。 そこで太郎さんは, どの位置から蹴るとゴールしやすいかを考えることにした。 地点を通り,直線ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは, 0を原点とし、 座標軸を0からCの方向をx軸の正の方向、 OからBの方向をy軸の正の方向となるようにとり, 点Pの位置でボールを蹴るこ とを図2のように座標平面上に表した。 B. (5.0) B4 (2.0) A 0 図2 このとき 2点A, B の座標はA(0, 2), B(0, 5), ボールを蹴るラインを表す直 太郎さんは、最もゴールしやすいのは、 APBの大きさが最大になる地点Pであ ると考えた。 「レーの ∠APBの大きさが最大となる点Pの座標を求めよう。 ア イ (0<x9) とし、 図2のように, 2直線AP, BP とx軸の正の 向きとのなす角をそれぞれα, βとする。 この である。 クリー x- ウ x- エオ tana= tanβ= イ イ 1x <APB=a-B と表され、∠APBがらになることはないから,tan (e-β)を考え ることができる。 カキx tan (α-β)= となり, ケー コサx+ シス 常にクケコサx+ シス >0であるから, 0x9のとき, tan (α-β) > 0 である。 0 カキ さらに, tan (β)= と変形でき, 0<x≦9の範囲で シス タケ x+ コサ x シス タケ x+ は最小値 センをとる x ア 線 OD の方程式はy= x と表すことができる。 イ (数学Ⅱ, 数学 B 数学C第2問は次ページに続く。) (第3回-5) 以上のことから、点Pのx座標が タ のとき, ∠APBの大きさは最大である ことがわかる。 (第3回-6)

未解決 回答数: 1
数学 高校生

途中式も一緒にアからタの求め方を教えてください。 (3)も途中式ありでお願いします!

。 先生と生徒2人 次のア 2 の3人の会話を読み, ア に適する記号または数式を答えよ。 先生: 定期考査お疲れさまでした。 それではI課題いきまし ょう! 問題 a, b, c を実数とし,f(x)=x+ax2+bx+c とする ウ 関数 f(x) は,f(2)=10,f'(2) =13, f(x)dx=6 を満た オ しているとする。 また, k を正の実数とし、 2つの曲線 Cy =f(x) とC2:y=kx2 は異なる3個の共有点をもつとする。 (1) 関数 f(x) を求めよ。 (2)kのとりうる値の範囲を求めよ。 (3)2つの曲線と C2 で囲まれた2つの部分の面積が等し いとき, kの値を求めよ。 先生: 難しい問題ですが頑張っていきましょう。 まず、1つずつ処理していこう! j(2) = 10 から 整理すると キ ケ サ ア a + イ b+ c = ウ ****** ①ができるよ。 次に,f'(2)=13 から 整理すると ス H a+b= オ ②となるね。 また、Sof(x)dx=f(x+ax'+bx+c)dx=6 であるから 整理すると, a + キ b + ク c =3 ③ カ となるので,① ② ③ を解くと, a=4 ,b== ,C= サ より f(x)=シだね。 先生: 正解です。 では (2) も頑張ってみましょう。 (2)kのとりうる値の範囲を求めよ。 シ=kx2とするとス =0 ス =0. ④はx=セを解に もたないから, C と C2 が異なる3個の共有点を もつための条件は④の判別式をDとするとソ となり、求めるkの値の範囲はタ です。 ソ の解答群 (あ) D=0 (V) D÷0 (う)D> 0 (え) D≧0 (お) D< 0 (か) D≦0 ソ 正解です。 では、最後の問題です。 (3)2つの曲線とC2で囲まれた2つの部分の面積が等し いとき, kの値を求めよ。 イ H カ ク コ シ セ タ ~~~以下計算スペース~~~

回答募集中 回答数: 0
1/44