学年

教科

質問の種類

数学 高校生

高一数1 青チャート 二次関数 付箋の質問に答えていただきたいです。よろしくお願いします。

210 基本 00000 127 放物線とx軸の共有点の位置 (2) 2次関数y=x-(a+3)x+αのグラフが次の条件を満たすように、定数αの値 の範囲を定めよ。 (1) ・軸のx>1の部分と異なる2点で交わる。 ・軸のx>1の部分とx<1の部分で交わる。 指針 (2)( 基本126 ここでは0以 前の例題ではx軸の正負の部分との共有点についての問題であった。 外の数々との大小に関して考えるが, グラフをイメージして考える方針は変わらな い。 (1) D0. (軸の位置)>1, j(1)>0 を満たすように、定数αの値の範囲を定める。 (2) f(1)<0 基本例 1282次方程式の解と数の大小 (1) 00000 2次方程式-2(a+1)x+34=0が, -1x3の範囲に異なる2つの実数解を もつような定数の値の範囲を求めよ。 [類 東北大]基本 126 127 130 指針 2次方程式(x)=0の解と数の大小については、y=f(x)のグラフとの共有点の 位置関係を考えることで、基本例題 126 127 で学習した方法が使える。 ★ すなわち, f(x)=x^2(a+1)x+34 として 2次方程式(x)=0)が1x3で異なる2つの実数解をもつ 放物線y=f(x)がx軸の16x3の部分と、 異なる2点で交わる したがってD>0, -1 < (軸の位置) <3(-1)≧0 (3) 20で解決。 211 CHART 2次方程式の解と数々の大小 グラフ利用 D..∫(k) に着目 ③ のみか? b f(x)=x-(a+3)x+α²とし, 2次方程式f(x)=0の判別式をDとする。 af である。 解答 y=f(x)のグラフは下に凸の放物線で, その軸は直線x= (1) y=f(x) のグラフがx軸のx>1の部分と異なる2 点で交わるための条件は、次の [1] [2] [3] が同時 に成り立つことである 20 [(軸)>1] この方程式の判別式をDとし, f(x)=x2(a+1)x+3a 解答とする。 y=f(x)のグラフは下に凸の放物線で、その軸は 直線x=α+1である。 ② 33 65 21軸がx>1の範囲にある 0 1 +3 よって =-3(a+1)(a-3) -1<a<3 DP [3]f(1)> [1] D=f-(a+3)}-4・1・α°=-3(α-24-3) D0 から (a+1) (a−3) <0 [2] 軸x=aについて 2 ゆえに a+3>2 すなわち 4>1 [3] f(1)=12-(a+3) ・1+α²=a-a-2=(a+1) (a-2) f (1) > 0 から a<-1, 2<a ...... ① a+3 1 ① ② ③ の共通範囲を求めて ...... ③ 2<a<3 (2) y=f(x) のグラフがx軸のx>1の部分とx<1の 部分で交わるための条件は ゆえに (a+1) (a-2) <0 すなわち -1<a<2 (1)<0 注意 例題 126, 127 では 2次関数のグラフとx軸の共有点の位置 -1 a 0 x O に関する問題を取り上げたが、 この内容は, 下の練習 127 の ように, 2次方程式の解の存在範囲の問題として出題されることも多い。 しかし 2次方程 式の問題であっても, 2次関数のグラフをイメージして考えることは同じである。 練習 2次方程式 2x2+ax+α=0が次の条件を満たすように, 定数 α の値の範囲を定めよ。 ② 127 (1) ともに1より小さい異なる2つの解をもつ。 (2)3より大きい解と3より小さい解をもつ。 方程式 f(x)=0が1≦x≦3の範囲に異なる2つの実数 指針」 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と、 異なる2点で交わることである。 すなわち、次の [1] ~ [日が同時に成り立つことである。 D> 0 [21 軸が-1 <x<3 の範囲にある [3] (-1)≥0 [4] (3)≥0 [1] 41=(-(a+1)-1・3a=a-a+1= (a-212)1+1/20 よって, D>0は常に成り立つ。 (*) [2] 軸x=α+1について -1<a+1<3 すなわち -2<a<2 ...... ① [3] f(-1)≧0から (-1)-2(a+1)(-1)+3a≥0 (127(1),(2)(128について、 (27(1)、128のように 3 の方針。 2次方程式についての間 題を 2次関数のグラフ におき換えて考える。 この問題では, D の符号、 軸の位置だけでなく、区 間の両端の値(-1). /(3)の符号についての 条件も必要となる。 __1() <3 35 12次不等式 [(27(2) [1][2][3]確かめ D,軸、f(F)を考えるときと、☆ (27(土)のように f(k)のみ(D.軸は考えない) 問題はどのように見分ければ たり、 128 を[3][4]だけ 確かめたり、 でも良いのではないか? と思ってしまいました。 良いですか?☆の3要素が重要な区別の仕方を教えて 下さい! 親は分かるのですが、

解決済み 回答数: 3
数学 高校生

写真の付箋に書いてあるところが分かりません 教えていただけると嬉しいです…!

第2章 確率分布と統計的な推測 (103) B2-7 B2.5 赤い本が2冊, 青い本がn冊ある。このn+2 (冊)の本を無作為に1冊ずつ選び、本棚に 左から並べていく。2冊の赤い本の間にある青い本の冊数を Xとするとき,Xの平均と分 散を求めよ べ方は, (n+2)! 通りである. n+2 (冊) の本は区別がつくとすると, これらすべての 2冊の赤い本の並べ方は2通り X=k (2冊の赤い本の間に青い本がん冊並ぶとき,ただ し, 0≦k≦n) のとき, すべての本の並べ方を考える. nPk= n! (n-k)! よって, (+2)! ここで, (分子)=2. n! (n-k)! (n-k+1) ・(n-k)! 2冊の赤い本の間に, n冊の青い本からk冊を選んで並べ る方法はP通り 赤い本2冊とその間の青い本冊を1組として,この1組 残り冊) の青い本を並べる並べ方は (n-k1.通り 2139 以上から,X=kとなる本の並べ方は, 2.„P (n-k+1)! 通りである. P(X=k)=2mPkn-k-1)! を利用する。 なぜ? =2n..(n-k+1) 分母)=(n+2)(n+1).n!」 PAGE A OS X これらから, P(X=k)=- 2(n-k+1) (n+2)(n+1) ......① a よって, X の平均は、 OS 2 EX) = 0・・ =+k-- 2(n-k+1) a EIL I n+2 (n+2)(n+1) ①より) 2 2 (n+2)(n+1){(n+1)k-2k] 2 (+2) (+1) (n+1) ・1/2月(月+1) (n+2)(n+1) = = n(n+1)(2n+1) = n(n+1)(2n+1)} 2 P(X=0)=- n+2 |k=n(n+1) n 2n+1 n+1- n+2 nI 3 また,X'の平均は, 2 n+2= (n+2)(n+1) E(X2)=02. -+Σk².- 2(n-k+1) (+2)(n+1){(n+1)宮が一部 2 T(n+2)(n+1) k=1 {(n+1)./ln(n+1)(2n+1)62 -1㎡(n+1)} n_n(n+1) サの場合 (1) =(n+1)2 の 上取り出す 15 となn(n+1)/2n+1 から2 n+2 3 2 6 その よって, Xの分散は, n(n+1) V(X)= n 6 (3)²= n(n+3) 18 (V(X)=E(X2)-{E(X)} さいこ 2でから4個

解決済み 回答数: 1
数学 高校生

(2)の青付箋貼ってあるところで、なんで-2-1/a<-4 なんですか?あとなんのために範囲の確認をしているんですか?

172 第6章 微分法 基礎問 110 面積 (VI) y=a(16-y2)-12a+2 .ay²+y-2(2a+1)= 0 ..(y-2) (ay+2a+1)= 0 y=2, -2- Ah - 48-2 12 0 2011 6 よって(-2)(a4+2a+1) 173 放物線 ①と円+y=16 (1)放物線 ①がαの値にかかわらず通る定点を求めよ. 放物線y=ar2-12a+2 · (0 <a< 1/1) ...... ・① を考える. 2-1 20+1 a -20 ここで,212 より-2-- a 1-4 となり,円=16 上の点 ・・・ ② の交点のy座標を求めよ. a=1のとき,放物線 ①と円 ②で囲まれる部分のうち, 放物 線の上側にある部分の面積Sを求めよ. (1)定数αを含んだ方程式の表す曲線が,aの値にかかわらず通る 精講 定点を求めるときは、式をαについて整理して, a についての恒 等式と考えます (37). (2)2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます. (3) 面積を求めるとき,境界線に円弧が含まれていると、 扇形の面積を求める ことになるので,中心角を求めなければなりません。だから, 中心〇と交点 を結んだ線を引く必要があります。 もちろん,境界線に放物線が含まれるの で,定積分も必要になります。 y=-2-- 1 a は不適. よって, y=2 は-4≦y≦4 をみたす (3)a=1/12 のとき,①は y=1/1000 また,(1),(2)より, ①,②の交点は 4 y A(2√3, 2), B(-2√32) AO=120° だから 4 2 BY XA S-22-(-1) dr dx 1 2π --4-4-sin- 360 2 3 1 12/3 16 = 14 42 2F -1 解答 (1) y=ax2-12a+2 より y移項する ポイント a(x²-12)-(y-2)=0 < αについて整理 これが任意のαについて成りたつので [2-12=0 :.x=±2√3,y=2 +(7.4². 120 --³+6x+6x-4√3 Jo 24/3 +12/3 +10 -4/3 6 16 =4√3+0x7 π -4 ÷(径)05×(半径)2x360 境界に円弧を含む図形の面積は,中心と結んで扇形の 面積を考えるので、中心角が必要 (2) y-2=0 よって、 ①がαの値にかかわらず通る定点は (±2√3, 2) y=ax²-12a+2 ・・・・・ ① r2+y2=16 ......2 ②より, '=16-y' だから, ①に代入して 演習問題 110 第6章 2次関数f(x)=x^2+ax+b が条件f(1)=1, f'(1) = 0 をみた すとする.また,方程式-2x+y-2y=0 が表す円をCとする. (1) α, 6 の値を求めよ. (2)y=f(x)のグラフと曲線で囲まれる部分の面積のうち,放 物線の下側にある部分の面積Sを求めよ..

解決済み 回答数: 1
数学 高校生

(2)で黄色い付箋が貼ってあるところの「ここで〜となり」の範囲を確認している部分がなんそうなっているのかわかりません。後右ページ上から2行目から3行目の計算の仕方がわかりません

基礎問 110 面積(M) 放物線y=ax2-12a+2 (0<a</ ......① を考える. y=uv y 14042 ay2+y-2(2α+1)=0 ..(y-2) (ay+2a+1)= 0 .. y=2, −2-17= 201 a a -20-=-2-4 (1)放物線 ①がαの値にかかわらず通る定点を求めよ. (2) 放物線①と円 2+y2 =16・・・ ② の交点のy座標を求めよ. (3)a=1/12 のとき,放物線 ①と円 ②で囲まれる部分のうち、放物 精講 線の上側にある部分の面積Sを求めよ. (1)定数αを含んだ方程式の表す曲線が, aの値にかかわらず通る 定点を求めるときは、式をαについて整理して,aについての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, 座標が必要でも,まず』を消去してyの2次 方程式にして解きます。 (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので, 中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります.もちろん、 境界線に放物線が含まれるの で,定積分も必要になります。 ここで, 2</1/12より-2-1/2-4となり,円+g=16 上の点 _1は不適よって, y=2 y=-2- (3)a=1/12 のとき,①は y=1/1 (1)(2), ①,②の交点は (A(2√3,2), B(-2√3, 2) AOB=120° だから 2√3 S=2.5" {2-(1-1)) は-4≦y≦4 をみたす y 4 2 B4.... A d.x +(x-4³. 120-4-4-sin 2) +(7.42.120 360 12/3 16 3 --+6]+6x-4√3 =24√3+12√3+1-4√3 6 16 =4√3+10% x -1 解答 (1) y=ar2-12a+2 より ポイント a(x²-12)-(y-2)=0 <aについて整理 これが任意のαについて成りたつので 2-12=0 y-2=0 x=±2√3,y=2 演習問題 110 よって, ① がαの値にかかわらず通る定点は (±2√3, 2) y=ax²-12a+2.....① (2) |r2+y2=16 ......② ②より, z=16-y だから, ①に代入して 境界に円弧を含む図形の面積は,中心と結んで扇形の 面積を考えるので、中心角が必要 2次関数 f(x)=x'+ax+b が条件f(1)=1, f'(1)=0 をみた すとする.また,方程式-2x+y-2y=0 が表す円をCとする. (1) α, bの値を求めよ. (2)y=f(x)のグラフと曲線Cで囲まれる部分の面積のうち,放 物線の下側にある部分の面積Sを求めよ. JmHe

回答募集中 回答数: 0
1/30