学年

教科

質問の種類

数学 高校生

この線部の式の意味がよくわからないので教えてください🙇‍♀️ 蝶々型の面積比の問題です。

216 総合演習問題 §7 図形の性質 ( 7 (12分20点) 〔1〕 太郎さんのクラスでは,数学の授業で次の問題が宿題として出された。 6円 ABの 4 形は 問題 △ABCにおいて, AB = 4, BC=2, CA =3とする。 辺 AB を 1:3 に内分する点を D, △ABCの内心をIとして, 直線 AI と辺BC の交 点をE, 直線DIと辺BCの交点をFとする。 このとき, Iは線分 DF をどのような比に分けるか。 (1) 内心についての記述として,次の①~③のうち、正しいものはア である。 ア |の解答群 ⑩ 三角形の3本の中線は1点で交わり, この点が内心である。 ① 三角形の三つの内角の二等分線は1点で交わり, この点が内心である。 三角形の3辺の垂直二等分線は1点で交わり, この点が内心である。 三角形の3頂点から対辺またはその延長に下ろした垂線は1点で交わ り,この点が内心である。 (2) 太郎さんは宿題について考え, 次のように解答した。 イ AI I 点Iは内心であるから, BE= であり, である。こ ウ EI オ のとき, BF 「カキ] EF FI ケ であるから, である。 DI ク コサ よって, 点Iは線分 DF を コサ: ケ の比に内分する。 (3)△ADIと△EFIの面積比は AEFI 「シス] = AADI センタ である。 (次ページに続く。) 3)

回答募集中 回答数: 0
数学 高校生

青チャート例題38(2)(3)より2次式の解の種類について質問です。 Kの場合わけしないといけないのは分かるのですが何故(2)は実数全てにおいて異なる二つの実数解になるんですか? (3)のように>0、=0、<0で場合分けする必要はないんでしょうか? また(2)のような答えに... 続きを読む

68 88 基本 例題 38 2次方程式の解の判別 0000 (3)x2+2(k-1)x-k2+4k-3=0 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 2x²-(k+2)x+k-1=0 (1) 3x²-5x+3=0 基 k p.66 指針 2次方程式 ax2+bx+c=0の解の種類は, 解を求めなくても, 判別式D の符号だけで 別できる。 異なる2つの実数解 質 公小 2次方程式の解の判別 D=0⇔重解 重解はx=- 2a D0⇔異なる2つの虚数解 解答 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は,(1)と変わらないが がkの2次式で表され,kの値による場合分けが必要となることがある。………… 与えられた2次方程式の判別式をDとすると (1) D=(-5)-4・3・3= -11<0 をも よって、異なる2つの虚数解をもつ。 つの (2) D={-(k+2)}-4・2(k-1)=k+4k+4-8(k-1) =k-4k+12=(k-2)2+8 ゆえに、すべての実数kについて よって、異なる2つの実数解をもつ。 する D>0 (3) 1/2=(k-1)^-1.(k+4k-3)=2k²-6k+4 =2(k2-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2 <kのとき 異なる2つの実数解 D = 0 すなわち k=1, 2 のとき 重解 D<0 すなわち 1 <k<2のとき 異なる2つの虚数解 D<0 一D>0」 CHES OF T {-(k+2)}2 の部分は, (1)2 =1なので, (+2 と書いてもよい。 1+CIDA ax2+2b'x+c=0 では D 4 α <βのとき 利用する (x-α)(x-B)>0 ⇔x<a, B<x α <βのとき (x-α)(x-B)<0 ⇒a<x<B D>0- 2 練習 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 31-12x 指

未解決 回答数: 1
数学 高校生

赤で線を引いた所で、(n+1)(n+2)分のan+1がbn+1になる理由が分からないので教えてください🙇‍♀️

近畿大 ] 基本34 anの える。 例題 基本 la=2, an+1= an (1)n(n+1) ((2) an 39 an+1=f(n) an+g型の漸化式 n an+1によって定められる数列{a} がある。 -=bn とおくとき, bn+1 を bn とnの式で表せ。 をnの式で表せ。 4 an (1) bn= n(n+1)' bn+1= an+1 指針 (n+1) (n+2) で割る。 (n+1)(n+2) を利用するため, 漸化式の両辺を ・基本25 (2) (1) から bn+1=bn+f(n) [階差数列の形]。 まず, 数列{6} の一般項を求める。 n+2 (1) an+1= n 解答 an+1の両辺を (n+1) (n+2) で割ると an+1 (n+1)(n+2) 1 an n(n+1) + (n+1)(n+2) 2+1) (n+2)...(*) an -=bn とおくと n(n+1) bn+1=6n+ 1 (n+1)(n+2) (2)61= 1.2 bn=b₁+ =1+ a1 =1である。 (1) から, n≧2のとき 1 n-1 =1+ ◄an=n(n+1)bn, an+1=(n+1)(n+2)6n+1 を漸化式に代入してもよ い。 bn+1-bn 1 (n+1)(n+2) ◆部分分数に分解して,差 の形を作る。 1 k+2 n n+1 途中が消えて、最初と最 後だけが残る。 3n+1 k=1(k+1)(+2) =1+(1/2)+(赤) =1+ 3 1 = 2 n+1 2 n+12(n+1) ① b=1であるから, ① は n=1のときも成り立つ。よって an=n(n+1)bn=n(n+1)・ 3n+1 n(3n+1) = 2(n+1) 2 ①初項は特別扱い 上の例題で,おき換えの式が与えられていない場合の対処法 n+2 検討漸化式のαに が掛けられているから, 漸化式の両辺に×(nの式)をして n 【PLUS ONE f(n+1)an+1=f(n)an+g(n) [階差数列の形] に変形することを目指す。 (n+1)の式n の式 まず,漸化式の右辺にはnn+2があるが, 大きい方のn+2は左辺にあった方がよい あろうと考え、両辺を (n+2) で割ると D an+1 an A n+2 n n+2 2つの項 のうち, 左側の分母をf(n+1), 右側の分母をf(n) の形にするために, A 両辺を更に(n+1)で割ると、解答の(*) の式が導かれてうまくいく。

回答募集中 回答数: 0