学年

教科

質問の種類

数学 高校生

(2)番です。答えは合っているのですが、私の求めた求め方がたまたまあったのかどうかを知りたいです。教えてください。

例題 13 二項定理の利用 次の問いに答えよ. **** (+) (1) 21=1+20 として, 二項定理を利用して, 21 を400で割ったとき の余りを求めよ. (京都教育大・改) (2) 1011 の下位5桁を求めよ. (お茶の水女子大改) 利用し,二項定理を使う. 考え方 (1) 21=1+20 より 21=(1+20) となるので, 21=1+20, 400=202 であることを M M 101=1+100 より 101= (1+100)利用することを考える 解答 (1) 21=(1+20)21 21C020°+21C120 wwwww +21C2202+ 101100=(1+100) 100=(1+102) 100% +21C202020+ 21 C2120212-(z) 400=20°より,21C2202 +... +21C2120は400の 倍数となる. 400の倍数とならない項, つまり,21020021C,201 を考えると, で 21Co20°+21C20'=1×1+21×20 =1+420 二項定理で展開する M' 部分の項はすべ て202で割り切れる 残った部分の頃より 余りを求める. 200=1 01=1+p+cp s =421 =400+21 よって、400で割った余りは, 21.=p このは (2)101100 =(1+100)=(1+102)100 =100Co(102)+100C (102)'+100 C2 (102) 2 +100C3(10)+100C99 (102) 99+100C100 (102) 100 AC3 (102) ++100 C100 (102) 100 は (102) 1000000 www 101 部分の項は下 M 5桁がすべて0に の倍数であり,下位5桁がすべて0になるので、残りるため計算しなく の項を考えると, 100C(10%)+100(102)'+ 100C2(102)2 100.99 -X 10000 2 =1+100×100+ =1+10000+49500000 =49510001 よって,下位5桁は,10001 みよい。

解決済み 回答数: 1
数学 高校生

この問題の2番について質問です。三種類の文字から作られるなので、8C6ではなく5C3だと思ったのですが,どの考え方が間違ってますか?

基本例 32 重複組合せの基本 000 次の問いに答えよ。 ただし, 含まれない数字や文字があってもよいものとする (1) 1,2,3,4の4個の数字から重複を許して3個の数字を取り出す。 このと 作られる組の総数を求めよ。 (2)x,y,zの3種類の文字から作られる6次の項は何通りできるか。 解答 p.383 基本事項 慣れるまでは,○と仕切りによる順列の問題として考えるとよい。 指針 基本事項で示した H = C を直ちに用いてもよいが, n とrを取り違えやすい。 (1) 1,2,3,4 の異なる4個 (4種類) の数字から重複を許して3個の数字を取り出 →3つの○と3つの仕切りの順列 (2) x, y, zの異なる3個 (3種類) の文字から重複を許して6個の文字を取り出す。 →6つの○と2つの仕切りの順列 (1) 3つので数字, 3つので仕切りを表し 1つ目の仕切りの左側に○があるときは 1つ目と2つ目の仕切りの間に○があるときは 数字 1 数字 2 |(1) 例えば、 001101 1 234 3つ目の仕切りの右側に○があるときは 2つ目と3つ目の仕切りの間に○があるときは 数字 3 数字 4 (1,1,3) 101010 1234 (2,3,4)を を表すとする。 このとき, 求める組の総数は, 3つの○と3つの | の順列 の総数に等しいから 6C3=20 (通り) (2)例えば, (2) 6つの○でx, y, zを表し、2つので仕切りを表す。 このとき, 求める組の総数は, 6つの○と2つのの順列 の総数に等しいから 8C6=gC2=28 (通り) 00010100 xyz でxyz を表す。

未解決 回答数: 1
数学 高校生

下の問題を二枚目の写真のように解きました。 このやり方だと,XとYの値が求めれなかったのですが,求め方はありますか? また,解説のように解く方がいいですか?

その 基本 89 した 00000 実数x,yx+y2=2を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。 また、そのときのx,yの値を求めよ。 指針 [類 南山大 ] 基本101 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 ← 2x+y=t を y=t-2x と変形し,x2+y2=2に代入してyを消 去すると x2+(t-2x) =2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかっ CHART 最大 最小 =tとおいて,実数解をもつ条件利用 20 2x+y=t とおくと y=t-2x ① 解答 これをx2+y2=2に代入すると したがって x2+(t-2x)=2 整理すると 次 5x2 -4tx+t2-2=0 自去す このxについての2次方程式 ② が実数解をもつための 条件は、②の判別式をDとすると (+)=S+ツの不等式)。 (2) D≧0 ここで D=(2t)-5(2-2)=-(t-10) D≧0から 参考実数a, b, x, yに ついて,次の不等式が成り 立つ (コーシー・シュワル CONCE(ax+by)≤(a+b)(x²+ y²) [等号成立は ay=bx ] この不等式に a=2,6=1 (を代入することで解くこと できる。 t2-10≤0 フェ これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0で,②は重解 x=- -4t_2t を のとき②は t=±√10 2.5 5 もつ。=±√10 のとき x=± 2/10 よって 5x2+4√10x+8=0 よってまたは 5 /10 ①から y=± (複号同順) 5 よって x= 2/10 10 y= のとき最大値10 主 ゆえに 2√2 2/10 x=± =土・ 5 √ 10 5 ” 5 2/10 √10 x=- 5 " y=- のとき最小値√10 √5 ①からy=土- 5 (複号同順) 5 としてもよい。 である。 たすとき の

解決済み 回答数: 1