学年

教科

質問の種類

数学 高校生

なんでx=3分のa以外にf(x)=27分の4aの3乗を満たすxがあるって分かるんですか?

354 |基本例題 223 係数に文字を含む3次関数の最大・最小 αを正の定数とする。 3次関数f(x)=x-2ax2+a'x の 0≦x≦1 における最大 値 M (α) を求めよ。 立命館大 ] 00000 基本 219 224 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で, 極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう a y になる (原点を通る)。 ここで, x=- 以外にf(x)=(1/2) を 満たすx (これをαとする) があることに注意が必要。 3 よって、1/3,α (1/3<α)が区間0≦x≦1に含まれるかどうか 3' a で場合分けを行う。 f'(x)=3x2-4ax+α²=(3x-a)(x-a) 解答 f'(x)=0とすると x=131 a a 0 a a ay 3 + 0 まずは,f'(x) =0を満た すxの値を調べ, 増減表 をかく。 a > 0 であるから, f(x) の増減表は次のようになる。 <a>0 から x [2] 2a3のと 4 a f(x)はx=33 M(a)= 4 [3] 0<a< <a< 3 の 4 f(x) は x= 以上から M(a P Te a .... a ... 0<<a 3 3 - 20 + Pa S(0)\( (0) f'(x) + 0 f(x) 極大 極小 ここで,f(x)=x(x2-2ax+α²)=x(x-a)から 2 4 (3)=(-a)=a³, 1(a)=0 -27 と直線 y=f(x) 大量y=1/27 1は、x=1/3の =1/3以外にf(x)=27 4 点において接するから、 αを満たすxの値を求めると, 4 f(x) = 12/27 からおけるVの as- x-2ax2+α2x- 4 ゆえに(x-1)(x1/30) 05/5 270=0とな S (*) 11001-2a a² =0 ama 5 4 Q2 3 9 27 x= 3 であるから x=- a 4 3 5 4 a 1- うになる。 よって, f(x)の0≦x≦1における最大値 M (α) は,次のよ 201 -a 92 0 3 ¥ 9 a 4 3 9 a 3 [1] 1< // すなわち a>3のとき,山 4 1- 0 39 f(x) はx=1で最大となり a2-2a+1 M(a)=f(1) ☆最大 -- 10 la a x 3 ●指針」 ★の方針。 [1]は区間に極値をとる xの値を含まず、区間の 右端で最大となる場合。 練習 ③223 alt f(x)-a³ 12(x-1) 1で割り切れる。このこと を利用して因数分解する とよい。 63 13 3次関数の 検討 p.344 の参 この値を調 2つの x 座標 よって ½ として

解決済み 回答数: 1
数学 高校生

[1]の条件は思いつくのですが、[2]と[3]の条件が自分ではなかなか思いつきません。こういうのは何回もこの問題を解くしかないのでしょうか?

8 重要 例題 関数とその逆関数のグラフの共有点(2) 00000 f(x)=x²-2x+k(x≧1) の逆関数をf'(x) とする。 y=f(x) のグラフと |y=f'(x) のグラフが異なる2点を共有するとき, 定数んの値の範囲を求めよ。 基本10 指針 逆関数f'(x) を求め, 方程式f(x)=f(x) が異なる2つの実数解をもつ条件を考え てもよいが、無理式が出てくるので処理が煩雑になる。ここでは,逆関数の性質を利 用して、次のように考えてみよう。 共有点の座標を (x, y) とすると, y=f(x) かつy=f-1 (x) である。 ここで,性質 y=f'(x)=x=f(y) に着目し,連立方程式 y=f(x), x=f(y) が異なる2つの実数解 (の組) をもつ条件を考える。 x, yの範囲にも注意。 共有点の座標を (x, y) とすると tv= 解答 y=f(x) かつy=f-1(x) 参考 y=x2-2x+kとす ると y=f-1(x) より x=f(y) であるから,次の連立方程式を考 よって える。 y=x2-2x+k(x≧1) ①, x=y2-2y+k(y≧1) ① ② から y-x=(x+y)(x-y)-2(x-y) したがって (x-y)(x+y-1)=0 x1,y≧1であるから x+y-1≧1 ゆえに x=y よって, 求める条件は, x=x²-2x+k すなわち x2-3x+k=0が x≧1 の異なる2つの実数解をもつこと である。 B すなわち, g(x)=x2-3x+kとし, g(x) =0の判別式をD こ とすると、次のことが同時に成り立つ。 [1] D> 0 x2-2x+k-y= 0 x=1±√12-(k-y) x≧1から x=√y-k+1+1 xとyを入れ替えて,逆関 数は f1(x)=√x-k+1 +1 A 逆関数f(x) の値域 は 関数 f(x)の定義域と 一致するから y≧1 B 放物線とx軸がx≧1 の範囲の異なる2点で交わ る条件と同じ。 y y=g(x) [2] y=g(x) の軸がx>1の範囲にある [3]g(1) 20 [1] D=(-3)2-4・1・k=9-4k ={(x)}(1) 9 よって 9-4k>0 ゆえに k< 3 4 3 3 + 0 3 [2] 軸は直線 x = x=1/2で12/28>1である。 [3]g(1)≧0から 12-3.1+k≧0 よって k≧2 4. ③④の共通範囲をとって 9 2≤k<- (S) or N 4

解決済み 回答数: 1
数学 高校生

波線部について質問です。なぜ>=なんですか?二つの解とあるので,>ではないんですか?

基本例題 52 2次方程式の解の存在範囲 ①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 /p.87 基本事項 2 89 指針 2次方程式x2-2px+p+2=0の2つの解をα,βとする。 2章 解と係数の関係、解の存在範囲 (1) 2つの解がともに1より大きい。→α-1>0 かつβ-1> 0 (2)1つの解は3より大きく、他の解は3より小さい。 →α-3と β-3が異符号 以上のように考えると, 例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα,βとし, 判別解 2次関数 解答 別式をDとする。 4 =(− p)² - (p+2)= p²-p−2=(p+1)(p−2) 解と係数の関係から a+β=2p, aβ=p+2 (1) α>1,β>1であるための条件は D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (B-1)>0 D≧0から よって (p+1)(p-2)≥0 p≤ -1, 2≤p ...... ① (α-1)+(β-1) > 0 すなわち α+β-20 から 2p-2>0 よって>1 ...... 2 (α-1) (B-1)>0 すなわち αβ-(a+β) +1 >0から で p+2-2p+1>0 よって <3 ③ 求めるかの値の範囲は,①,②, ③の共通範囲をとって f(x)=x2-2px+p+2 のグラフを利用する。 (1) 12/27=(p+1) (p-20 軸について x=p>1, f(1)=3-p>0 から 2≦p<3 YA 3-1 x=py=f(x) + α P B x 0 1 2 -①- (2)(3)11-5p<0から 123 P p>. 11 5 <題意から α =βはあり えない。 2≦b<3 (2) α <β とすると, α<3 <βであるための条件は (α-3) (B-3) < 0 すなわち αβ-3 (a+β)+9<0 ゆえに p+2-3・2p+9 < 0 よって p> 5 練習 2次方程式 x 2-2(α-4)x+2a=0が次の条件を満たす解をもつように定数αの値 52 の範囲を定めよ。 (1) 2つの解がともに2より大きい。 (2)2つの解がともに2より小さい。 (3)1つの解が4より大きく, 他の解は4より小さい。 p.91 EX 34

解決済み 回答数: 1