学年

教科

質問の種類

数学 高校生

2番の問題がわかりません。2枚目のやつが私が解いたやつです。-1/2より小さい範囲を求めているのにどうしてそれ以外の範囲も答えなのか教えて欲しいです

705 基本例 例題 145 002 のとき, (1) 2cos20+sin 指針 複数の種類 ① (1) ② (1) は このと ③ ②で の値 CHAR 234 基本 例題 144 三角方程式・不等式の解法 (1) 002 のとき,次の方程式、不等式を解け。 (1) √2sin(6+)=1 ・おき換え 2 cos(20- π 3 5-1 指針 解答 ()内でおき換えると (1) √2 sint=1 ずこれを解く。このとき, tの変域に要注意! 例えば,(2) 000 (2) 2cost≦-1 となるから、 020≦20 <2.2→ π つまり, 2cost≦-1 を-- -1≦t<4/1の範囲で解く。 ≤20-1 CHART 変数のおき換え 変域が変わることに注意 (1)+q=t ...... ① とおく。 0≦0<2であるから 50+<2x+) π 6 すなわち π 13 < π 6 6 この範囲で√2 sint=1 すなわち sint=1/2を解く 3 と t= π ...... 4' 4 ①から=t-π π 3 ② を代入してθ= (2)20=t とおく。 0≦0<2であるから >82 π -≤20- π π <4- 3 3 11 すなわち π (1) 方程 y 整理 1 解答 数) -1 0 7 π 12' 12 と 8 t ・π, よって 4 3 この範囲で2cost≦-1 すなわち cost≦- Asis, rsts or 3 12 17520-1*, *≤20-10, 10 われめるは を解く y 4 10 2 3 1 3 3 8 1 10 1 x 3 3 ゆえに20 5 π, 3л≤20≤⋅ 3 113 T よって101212/21/2 TO 5 ・π, 32 練習 0≦2のとき,次の方程式、不等式を解け。 ② 144 1) tan(+)=√3 (2) sin(-)-1 ゆえ よっ 0≤0 S (2) $14 (3)

未解決 回答数: 0
数学 高校生

キ=n-2、ク=n-1になる理由が分かりません。 教えてください🙏

F22/5/5. 数学Ⅱ・数学B 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題) (配点 20) 花子さんは,毎年の初めに預金口座に一定額の入金をすることにした。この入金 を始める前における花子さんの預金は10万円である。ここで,預金とは預金口座 にあるお金の額のことである。 預金には年利1%で利息がつき, ある年の初めの 預金が万円であれば,その年の終わりには預金は1.01万円となる。 次の年の 初めには1.01万円に入金額を加えたものが預金となる。500 毎年の初めの入金額を万円と年目の初めの預金を4万円とおく。 ただ L. p>0 EL, n 3.0 v2z00 180.0 750,0 8230.000.0 20.0 40.0 zep 01580.000 TO 0 例えば, a1= 10+p, a2 = 1.01(10) + p) +pである。 10 10.0 00.0 001RIS.0 18.0 880.0 209.0165 02881.00a0jare.0 0 % 1.0 8.0 E.0 8.310 reel 01210 40 2.0 0 SES Dross.0 ass. .0 花子さんの預金の推移 Las 0 Dres D 0 Sa 0 0 0 2012 1年目の初め1 (1年目) 10+p 1年目の終わり 1.01 (10+ p) 0 6.0 a1 as 26.0200.00 万円入金 10.0 198008290 Suga 2年目の初め 81 00004.0 2年目の終わり (2年目) 1.01 (10+p)+p000 BEN 1.01 (1.01 (10+p) + p} a20 万円入金 STEA 3年目の初め (3年目) 3年目の終わり Be SS 参考図 (数学Ⅱ・数学B第4問は次ページに続く。 83 TS 83 S -44- (260644)

未解決 回答数: 0
数学 高校生

高1の数学の実テの問題で、(3)の解き方がわかりません。解説よろしくお願いします🙇‍♀️

[2] 次の【課題】に対する, 先生と太郎さんの会話を読んで,下の問いに答えよ。 【課題】 1月 IRISAS S I 々を正の定数とする。 実数xに関する2つの条件pg を次のように定める。 E Q:x < 3 命題 「pg」の真偽を調べよ。 先生:条件はaの値によってxの値の範囲が変わりますね, q=1のとき、命題 「pg」の真偽について考えてみましょう 太郎:α=1 のとき,条件p, q を満たす実数xの値の範囲を それぞれ数直線上に表すと右の図のようになるから 命題「p⇒g」は真であると言えます。 0 1 た 先生: 正解です。では、α=2のときも考えてみましょう。 太郎:a=2のとき、命題 「pg」はであると言えます。 先生:そうですね。では、命題 「pg」が真となるようなαの値の範囲はどうな りますか。 { 太郎: 命題 「pg 」 が真となるようなαの値の範囲は (イ) です。 先生: 正解です。では,次に【課題Ⅱ】を考えてみましょう。 【課題Ⅱ】 あ を実数の定数とする。 実数xに関する2つの条件 s, tを次のように定める。 s : 3≦x<5 t: x <6 または 6+1 <x 命題 「st」の真偽を調べよ。 先生: 命題 「st」 が真となるような6の値の範囲はどうなりますか。 太郎: 【課題Ⅰ】 と同じように数直線を利用して考えたら解けそうです。 I

未解決 回答数: 1