学年

教科

質問の種類

数学 高校生

73.1.2 三角形の合同を示してから、それぞれの線分や角度が等しいことを求めていったのですが、これでも大丈夫ですよね?

414 00000 基本例題 73 三角形の傍接円,傍心 △ABC の ∠B, ∠Cの外角の二等分線の交点をⅠとする。 このとき,次のことを 証明せよ。 (1) Iを中心として, 辺BC および辺AB, AC の延長に接する円が存在する。 F (2) ∠Aの二等分線は, 点Iを通る。 指針▷ (1) 点P が ∠AOB の二等分線上にある点 を利用する。 ⇔点Pが∠AOB の2辺 OA, OB から等距離にある Iから、辺BC および辺 AB, AC の延長にそれぞれ垂線 IP, IQ IR を下ろし、これら の線分の長さが等しくなることを示す。 (2) 言い換えると「∠B,∠Cの外角の二等分線と∠Aの二等分線は1点で交わる」とい うことである。点Iが∠QAR の2辺 AQ, AR から等距離にあることをいえばよい。 なお,(1) での円を△ABCの傍接円といい, 点Iを頂角 A内の傍心という。 解答 I から, 辺BC および辺AB, ACの延長にそれぞれ垂線IP, IQ, IR を下ろす。 (1) IB は ∠PBQ の二等分線であるから MO HA MO A MOS IP=IQ IP=IR ICは∠PCR の二等分線であるから よって IP=IQ=IR また, IP ⊥BC, IQ⊥AB, IRICAであるから, I を中心とし て、辺BC および辺AB, AC の延長に接する円が存在する。 (2) (1) より IQ=IR であるから, 点Iは∠QAR の2辺 AQ, AR から等距離にある。 ゆえに,点Iは∠QAR の二等分線上にある。 したがって,∠Aの二等分線は, 点Iを通る。 練習 0 084 ABCの色 広島修道大 613 基本68 Q 検討 傍心傍接円 10 三角形の1つの頂点における内角の二等分線と、他の2つの頂点におけ る外角の二等分線は1点で交わる。 この点を1つの頂角内の)傍心とい う。また, 三角形の傍心を中心として1辺と他の2辺の延長に接する円 が存在する。 この円を, その三角形の傍接円という。 1つの三角形において,傍心と傍接円は3つずつある。 なお,これまでに学習してきた三角形における外心,垂心,内心, 重心と 傍心を合わせて, 三角形の五心という。 B - I--- BAC 「基 △ 3. 指針 C 解 AF BM よま また 8 7 これ よ E C

未解決 回答数: 1
数学 高校生

記述に問題ないですか?

188 基本例題 120 絶対値のついた2次関数のグラフ 次の関数のグラフをかけ。 (1) y=x²-4|x|+2 指針▷ 例題 64,65と同じ方針。 次に従い, まず絶対値記号をはずす。 ① A≧0のとき |A|=A ② A <0のとき |A|=-A - をつけてはずす↑ 【CHART 絶対値 解答 (1) [1] x≧0の そのままはずす (2) 2次不等式 x2-3x-4≧0, x²-3x-4<0 を解いて,||内の式が≧0, <0 となるの 場合分けの分かれ目となるのは,||内の式= 0 となるxの値。 値の範囲をつかむ。 [2] x<0のとき y=x2-4x+2=(x−2)²-2 y=x2+4x+2=(x+2)²-2 よって, グラフは右の図の実線部分 のようになる。 (2) x2-3x-4=(x+1)(x-4)であるから x-3x-4≧0の解はx≦-1, 4≦x x2-3x-4<0の解は -1<x<4 ゆえに, x≦-1, 4≦xのとき y=x2-3x-4 -(x-3)²-25 -1<x<4のとき 練習 ③ 120 場合に分ける 分かれ目は ||内の式=0 のxの値 = 4 y=-(x2-3x-4) 3\ 25 --(x-3/2)² + ²5 4 (2)y=|x2-3x-4| よって, グラフは右の図の実線部分 のようになる。 次の関数のグラフをかけ。 (1)y=x|x-2|+3 -2 4 4 2 -1A 03 A4 i2 i V 基本 64,65 00000 y= 重要 122 2次式 → 基本形に直す。 検討 y=lf(x) | のグラフは, y=f(x)のグラフでy<0の 部分をx軸に関して対称に 折り返したグラフである。 p. 110 参照。 y=x2-3x4y 25 基本例 f(x)=1x2 0の部分 (-1<x<4) を折り返す 指針 定義場 しか 態で 1 2 3 解答 2-1=(x x²-1 [2] x2. [1] x≦ また よって, グラフ ゆえに をとる 「注意」 ③12

解決済み 回答数: 1
数学 高校生

(3)の(解1)はなぜ連立して解いているのですか?

ty=1のx>0,y>0 の部分を C で表す. 曲線C上に点 P(x,y) をとり, 点Pでの接線と2直線y=1, および, x=2との交点 をそれぞれ, Q, R とする. 点 (2, 1) をAとし, AQRの面積をSとお く.このとき、次の問いに答えよ. (1)+2=k とおくとき, 積141 をkを用いて表せ。 (2) Skを用いて表せ。 (3) 点PがC上を動くとき, Sの最大値を求めよ. (1) 点Pはだ円上にあるので, i' +4y²=4 (x>0,y>0) をみた しています。 (2) AQRは直角三角形です. (3) kのとりうる値の範囲の求め方がポイントになります。 解答は2つありま すが、1つは演習問題1がヒントになっています。 解答 mi'+4y²=4 PATUS = (x₁+2y₁)²—4x₁y₁=4 k²-4 4 (2) P(m1, yi) における接線の方程式は +4yy=4 (4-4², 1). R(2, 4-20¹) (1) .. miy=- よって, AQ=2-- 4-4y1_2.c+4y-4 AR=1-- UPLONBUCEt yk S=1/12 AQAR = 1 O Q P I1 X1 4-21_2.m+40-4+2%-2の方向 2y1 Ays _(+2yı-2)2_2(k-2)2円 = 2x₁41 k²-4 (土) x=2 Ay=1 JR 2 x 2(K-2) k+2 (3) (解Ⅰ) (演習問題1の感覚で・・・) [mi'+4y²=4......① より, y を消去して [+2y=k ......2 π 4 判別式≧0 だから, x₁²+(k-x₁)²=4 =2- 2²2-2k+k2-4=0 k²-2(k²-4)≥0 k²-8≤0 : -2√2 ≤k≤2√2 k また、右図より 118 演習問題 2 8 k+2 ポイント よって, 2<k≤2√2 んが最大のときSは最大だから, Sの最大値は6-4√2 =2cose (解ⅡI) *₁²+y₁²=1 ky (0<<) とおける. TC 3π y = sin0 .. k=x+2y₁=2(sin0+ cos 0) = 2√2 sin(0+7) だ円 2<k Y/A .. 2<k≤2√2 が最大のときSは最大だから, Sの最大値は6-4√2 だから // <sin (6+4) 1 a² + = 1 上の点は 62= x=acose,y=bsin0 とおける だ円 +²=1と直線y=-1/2x+k(k:定数)は,異なる x² 点P, Qで交わっている. このとき, 次の問いに答えよ. (1) 定数んのとりうる値の範囲を求めよ. (2) 線分PQの中点Mの軌跡の方程式を求めよ.

未解決 回答数: 1
数学 高校生

赤線部のようになるのが分からないので教えて頂きたいです!

7 交 30 場合の数と確率 11 場合の数 (1), 例題 11 倍数の個数 6個の数字 0, 1, 2 3 4 5 の中から異なる3個の数字を取り出して, (百の位は 0とはならないように)3桁の整数をつくる。次の3桁の整数は何個できるか。 (1) 321より大きい整数 (2) 2の倍数 (3) 5の倍数 (4) 3の倍数 [13 青山学院大・改 解法へのアプローチ (2)2の倍数は一の位が偶数である。 (4) 3の倍数は,各位の数の和が3の倍数となる。 5の倍数は一の位が0か5である。 (3) e 63 をB, (1) (2) 解答 (1) 百の位が3, 十の位が2の場合, 324, 325 のみで2個。 百の位が 3, 十の位が5の場合 4C1=4 (個) 百の位が3, 十の位が4の場合 4C1=4 (個) 百の位が4の場合 5P2=20(個) 百の位が5の場合 5P2=20(個) よって, 321より大きい整数は 2+4+4+20+20=50(個) (2) 2の倍数は一の位の数字が 0 一の位が0の場合 5P2=20(個) 2 4のものである。 CHOOS 一の位が2の場合 5P2個から 012,032,042,052 を引いて 20-4=16(個) 一の位が4の場合、一の位が2の場合と同様に16個 よって、2の倍数は 20+16×2=52 (個) (3) 5の倍数は一の位の数字が0.5 のものである。自闘を請求 第一の位が0の場合、20個 一の位が5の場合, (2) と同様に考えて 5P2-4=16 (個) 1845 よって, 5の倍数は 20+16=36 (個) (4)3の倍数は各位の数字の和が3の倍数のものである。 0から5までの3つの数字の中で,和が3 の倍数となるものは 0 を含むものは, {0, 1,2}, {0, 1,5}, {0, 2, 4}, {0, 4,5} 0を含まないものは, {1, 2,3},{1, 3,5}, {2, 3,4}, {3, 4, 5} だけある。 例えば, 0, 1,2の場合, できる整数は 3P3-2個 1,2,3の場合、できる整数は 3P 3個であるから, 3の倍数は (3P3-2) ×4+3P3×4=40 (個) 13041 64 ある AHSIN MYIN (2) 5の倍数 (4) 4500より大きく 8500より小さい整数 ★65 (1) (2) ★60 類題にChallenge ★62 5個の数字 0, 2,4, 68 から異なる4個を並べて4桁の整数をつくる。次 の整数は何個できるか。 (1) 4桁の整数 (3)3の倍数 [13 駒澤大] Jr う (1 (2 €

回答募集中 回答数: 0