学年

教科

質問の種類

数学 高校生

⑵の丸をつけたところってどうやって考えてるんですか?

40 第1章 数列の極限 29 +I (1) 不等式 ことを示せ . (2) > 22 +1 21 +1(n=2,3,・・・)が成り立つことを証明し, 1 無限級数 1+1/2 3 (1) kは自然数であるから, k+1>k より k>0 より, √k+1 k また, kが自然数より, であるから, 1 √k+1+√k したがって, ①,②より, √k+1 √k k k ここで, 1 n=¹√√n+1+√√n 1 √k+1+√k =√n+1−1 したがって, n=1√√n+1+√√n √2+1 よって, ③, ④より, jvn+1 n=1 n (2) n≧2 のとき, =1+ +...... + 1 √k kは自然数)が成り立つことを証明し、2 の部分和 S は, S₂=(√2-1)+(√3-√√2)+(√4¬√3) +…..... 2 3 + 2 √k+1 >√k √k k 14 =1+2 1 1 2 1 -=limS"=lim(√n+1−1) 11-0 √k+1+√k >√k>0 >1+ 1+1/1/2+(1/+1/1) 1 +······ は発散することを示せ,030-100 n √k+1+√k √k+1-√√√k (k+1)-k = √k+1=√k // 11-00 =8 ......④ -=∞ となり、 発散する. √k -X2+ = 2+1 したがって, n≧2のとき +... +1)+(1/ ...... ② + + 5 X ......+(n+1-√n) X4 1 1 6 7 + 8 1 2"-¹+1 1 1 1 + + + 8 8 8 8 +......+ 2" 2"X2"-1 + √√n+1 n 2" が発散する 1 =店より、 LE- きる. より、一般項が vn+1 より小さく,正の無 n 限大に発散する無限級数とし 例題29 (本編 p.76) と同 1 が利用で ==1₂√√n+1+√√n 追い出しの原理 0.18-0.0072 |第2'' +1項から第2項まで で区切って考える。 |2"-2" '=(2-1)2"-1 より 2個である. がn個

回答募集中 回答数: 0
数学 高校生

46番の無限級数の問題です。なぜこれは2nと2n-1に分けるのでしょうか?

I am. 2b が収束 an "=1 =1 = Σan+ [bn n=1 n=1 00 =Σan-Σbn n=1 7 8 a n=1 81 n 46. 第n項をa=(-1)"-1 n+1 lima2n-1=lim (-1)2n-22n-1 1118 1 1-(-- 21/12) 2 limazn=lim(-1)2n-1. 818 であり、 よって, N 818 n 2 1 √2n 1 2n + この無限級数は発散する。 1 √2n -Xn + + ·+.... + 11-0 + 2n 2n+1 は振動し, 0 に収束しない。 数列{an} n ここで,lim V2 したがって, limT"=∞ よって, 無限級数 n=1 47. 部分和として,初項から第n項までの和T” を考える。 1 1 1 Tm= √2 √√4 √6 √2n 2n 1 =8 とすると □(1) 2"-2" 5n 1 2n 3 3 1 n=1 √ 2n =lim ・+・・・ =lim →:00 →:00 4 5 45 次の無限級数の和を求めよ。 2 n 2 2+ 1 + √2n +.... は発散する。 (2) 0の半径をとするとき コ (3) すべての円の面積の総和を求めよ。 によってかわる大12 =1 1 n ADD □/46 次の無限級数は発散することを示せ。 1 2 3 + ・+(-1)"-1_ 2 3 4 =-1 + ......+ □(2) Σ- n=1 1+(-1)" n n+1 を を用いて表せ。 数列{an}が0に収束しない an は発散する ·+... が成り立つ 1≦k≦nのとき, 1 1 √2k √2n 1 2n がn個 ⓒSn≦T" (n=1, 2, 3, …....) のとき, limS=∞ ならば, limT"= 818 を利用する。 ・教p.25 応用例題12 ・教p.26 例題 13 p.27 例 10 352 → 十・・・・・・ の収束 発散を調べよ。 353

未解決 回答数: 1
数学 高校生

【無限級数】途中計算、これどうやったら1になるんですか?

AAAA 31 次の無限級数の収束、発散を調べ、収束するときはその和を求めよ。 1 ☐ (1) 1 ·+・・・・・・+ 3+7+ 5-9 □ (2) 1 1.5 00 Ž- ☐ 35 + 1 n=1₁√√√n+2+√√n 演 □(1) 1-- AAAA 32 次の無限級数の収束 発散を調べ, 収束するときはその和を求めよ。 1 1 1 (1) 1 + 1.2.3 2.3.4 3・4・5 4.5.6 + + 1 1 ¹+1 +2 +1+2+3+1+2+3+4 + 3 9 27 +...... 2+48 習 .... + 和自身は一般項が 1 (2n-1)(2n+3) illa + lassist 部分和を項数の奇数・ 1+(x2-2)+(x-2)+(x-2)+...... x² x² x² □ (2) x2+ 1+x2+ (1+x²)2 + (1+x2)3 + - +...... ➤➤▷▷ TO JUS 33 次の無限等比級数の収束、発散を調べ、収束するときはその和を求めよ。 和の公式! ・短くなっている (2)(√2+1)+(√2-1)+(5√2-7)+(29√2-41)+…… n=1 教p.20 例題 8 1 n(n+1)(n+2) ·+·.·.·. 1 1+2+3+ ......+n 1 34 「次の無限等比級数が収束するようなxの値の範囲を求めよ。 また, その ときの和を求めよ。 □(1) ·+· で場合分けして考える。 at after 第2項が-6,和が8である無限等比級数の初項と公比を求めよ。 1353 分母 ☆最後分から 教p.22 例題 9 ときに >>>> □ 36 次の無限級数の収束、発散を調べ、収束するときはその和を求めよ。 バージョン 最後がけ 16 1 1 1 1 + .......+ 4 n 2 2 3 3 教p.22 例題10 つかえる □ 37 等比数列{an} について, an=1, Zan²=2のとき, Σan² を求めよ。 n=1 n=1 からん、か におてかわる! つかり

解決済み 回答数: 1