数学
高校生

⑵の丸をつけたところってどうやって考えてるんですか?

40 第1章 数列の極限 29 +I (1) 不等式 ことを示せ . (2) > 22 +1 21 +1(n=2,3,・・・)が成り立つことを証明し, 1 無限級数 1+1/2 3 (1) kは自然数であるから, k+1>k より k>0 より, √k+1 k また, kが自然数より, であるから, 1 √k+1+√k したがって, ①,②より, √k+1 √k k k ここで, 1 n=¹√√n+1+√√n 1 √k+1+√k =√n+1−1 したがって, n=1√√n+1+√√n √2+1 よって, ③, ④より, jvn+1 n=1 n (2) n≧2 のとき, =1+ +...... + 1 √k kは自然数)が成り立つことを証明し、2 の部分和 S は, S₂=(√2-1)+(√3-√√2)+(√4¬√3) +…..... 2 3 + 2 √k+1 >√k √k k 14 =1+2 1 1 2 1 -=limS"=lim(√n+1−1) 11-0 √k+1+√k >√k>0 >1+ 1+1/1/2+(1/+1/1) 1 +······ は発散することを示せ,030-100 n √k+1+√k √k+1-√√√k (k+1)-k = √k+1=√k // 11-00 =8 ......④ -=∞ となり、 発散する. √k -X2+ = 2+1 したがって, n≧2のとき +... +1)+(1/ ...... ② + + 5 X ......+(n+1-√n) X4 1 1 6 7 + 8 1 2"-¹+1 1 1 1 + + + 8 8 8 8 +......+ 2" 2"X2"-1 + √√n+1 n 2" が発散する 1 =店より、 LE- きる. より、一般項が vn+1 より小さく,正の無 n 限大に発散する無限級数とし 例題29 (本編 p.76) と同 1 が利用で ==1₂√√n+1+√√n 追い出しの原理 0.18-0.0072 |第2'' +1項から第2項まで で区切って考える。 |2"-2" '=(2-1)2"-1 より 2個である. がn個
散する 41 投項が 三の無 2 1/2 > 2/2 + 1 ..... +1 k=1k が成り立つ. そして, 13 lim (2/2 + 1) = ∞ ......? 8 ② n10 であるから, ①,②より, 2,1 lim - -=8 n→∞ok=1k (1) よって、無限級数 1+1/+1/3 + 2 する. ・+ 1 n 第1章 数列の極限 41 +...... は発散 追い出しの原理 練 (18.3) qU 09121

回答

まだ回答がありません。

疑問は解決しましたか?