学年

教科

質問の種類

数学 高校生

線対称の点 (1)です。これはどこで間違えていますか?

6 1 基本例題 86 線対称の点、直線 直線 x+2y-3=0 をeとする。 次のものを求めよ。 (1) 直線ℓに関して、点P(0.2) と対称な点Qの座標 (2) 直線ℓに関して 直線 m: 3x-y-2=0 と対称な直線の方程式 指針 (1) 直線ℓに関して 点Pと点Q が対称 解答 (1) 点Qの座標を(p, g) とする。 直線PQはlに垂直であるから g+2. Þ ゆえに 2p-g-2=0... ① 線分PQの中点 (1/23,922 ) は直線 ID -2 l上にあるから (2) 直線ℓに関して,直線と直線nが対称で あるとき、次の2つの場合が考えられる。 ① 3 直線が平行 (m//l//n)。 2② 3 直線ℓ, m, nが1点で交わる。 7² 直線上の点P の, 直線ℓに関する対称点をQ とすると、 直線 QR が直線 n となる 本間は、 [②2]の場合である。 右の図のように, 2直線ℓ, m の交点をR とし, R と異なる 2/²+2.9=2 ・+2・ ・1 -3=0 ① ② を解いてp= 14 18 5²,9 = 5 (2) l m の方程式を連立して解くと ye 1320 -2 P r=1 Q p.135 基本事項 [1] 重要 87. 基本 109 PQLE 線分PQの中点ℓ上にある 772 12 m ゆえに p+2g-10=0....... ② Q(p, q) 00000 n よってQ(1/13. 18 5 ***** 直線の方程式から 3 = -1/2 x + 2/1/201 y=- 125の検討の公式を利 用すると,P を通り 直な直線の方程式は 2(x-0)-(y+2)=0 Qはこの直線上にあるから 2p-g-2=0 とすることもできる。 YAHO 34 m/m/

解決済み 回答数: 1
数学 高校生

この軌跡の問題の代入するという考え方がいまいち分からないです。 st、xyの関係式を作って代入するところまではわかるのですが、、、 どうしてどれでstの方程式をxyの方程式に作り替えられるのか分からないです

00000 /p.174 基本事項 ■ 2 重要 113 114 基本例題 110 三角形 2点A(6,0), B(3,3)と円x2+y^2=9上を動く点Qを3つの頂点とする三角形 の重心Pの軌跡を求めよ。 指針 動点Qが円周上を動くにつれて, 重心Pが動く。 このようなものを連動形 (Q 以外の文字で表す。 動してPが動く)ということにする。 連動形の問題では,次の手順で考えるとよい。 ①1 軌跡上の動点P(x, y) に対し、 他の動点Qの座標は,x, 例えば, s, tを使い, Q(s,t) とする。 [②] Qに関する条件を s, tを用いて表す。 ③3 2点PQの関係から,s,tをx,yで表す。 ④ ② ③ の式からst を消去して,x,yの関係式を導く。 なお, 上で用いたs, tを本書ではつなぎの文字とよぶことにする。 CHART 連動形の軌跡 つなぎの文字を消去して、xの関係式を導く P(x,y), Q(s,t) とする。 解答 点Qは円x2+y2 = 9上を動く から s2+12=9 点Pは△ABQ の重心である から x= 6+3+s 3 y= ...... 0+3+t 3 (2) s=3x-9, t=3y-3 よって, 求める軌跡は (s, t) Q₁ ****** -3 3 ②から ①に代入して したがって ゆえに, 点Pは円 ③上にある。 逆に, 円 ③上の任意の点は,条件を満たす。 練習 放物線 y=x2. 10 線 ① 上を動くとき、次の点Q (3, 1) A 0p(x,y)/3 6 X -3 (3x-9)²+(3y-3)²=9 (x-3)^+(y-1)'=1 中心が点 (3,1), 半径が10円 (*) B(3, 3) 注意 上の例題の直線AB:x+y-6=0と円x²+y²=9は共有点 をもたないから、△ABQ を常に作ることができる。 しかし、直 線AB と円が共有点をもつときは,その共有点をRとすると, 図形 ABR は三角形ではなくなるから, そのときの点Pを軌跡 から除外しなければならない。 (3) 点Qの条件。 R の軌跡を求めよ。 点Pの条件。 P Q の関係から,s,t をx, yで表す。 なお, Aは UP {3(x-3)}^+{3(y-1)}^=9 この両辺を9で割って ③ を導く。 (*) 円(x-3)+(y-1)'=1 でもよい。 直線AB Ay 6 3 13 ・①とA(1,2), B(-1,-2), C (4,-1) がある。 点Pが放物 6 C

回答募集中 回答数: 0
数学 高校生

黄色チャート 数Ⅱ 3章 79 はじめの「PQを通る直線とlが垂直に交わる」は理解できました。 しかし2つ目の立式の際に「PとQはlから等距離にある」を利用したのですが(点と直線の距離の公式)、a+b=5となっていましました。 この考えだとどこが間違っているのでしょうか?

! 1246123 ✓(4/6/13/192 直線l:x+y+1=0 に関して点P(3, 2) と対称な点Qの座標を求めよ。 重要 83, 基本 101 CHART SOLUTION 線対称 直線ℓに関して2点P, Q が対称 [1] 直線PQ が lに垂直 [2] 線分PQの中点が上にある 解答」 点 Q の座標を ( α, b) とする。 直線lの傾きは -1 DES 直線PQの傾きは b-2 a-3 直線PQlに垂直であるから (-1).-² -=-1 点Qの座標を(α, b) として, 上の [1], [2] が成り立つように,a, 6についての 連立方程式を作る。 6-2 a-3. が直線l上にあるから 3+a 2 POINT 2+6 + 2 +1=0 よって ①,②を連立させて解くと したがって, 点Qの座標は GATAN a+b+7=0 2 TAXO, l 0-67 p.115 基本事項 ⑥ YA よって a-b-1=0 ① 3+α ●また、線分PQの中点 ( 3122+2) これができなかった。今 ) 傾き b=-4 a=-3, (-3, -4) ......! Q(a,b)傾き-1 -10 -1 (3+a 2+b) 2+b) 2, b-2 a-3 •P(3,2) ←l:y=-x-1 直線PQ は x軸に垂直 ではないから a=3 TALA 直線lは線分PQの垂直二等分線である。 ( 両辺に(a-3)を掛け b2=4-3 同じ(6/23) 40= PASTEL 1① +② から 基本例是 座標 (1) ある直 a+6=0 など。 ++x(x) ( G 8T CHARS 点 CAMP (2) 平行 0+30 解 (1) T C

解決済み 回答数: 1