学年

教科

質問の種類

数学 高校生

ケが解説を読んでも分からないのですがなぜその様になるのか教えて下さい!!

第3問~第5問は,いずれか2問を選択し、 解答しなさい。 第4問 (選択問題)(配点20) nを2以上の自然数とする。 1からnまでの番号が一つずつ書かれたn枚のカー ドがあり, カードに書かれた番号が上から順に 「1,2, 3, ..., n」 となるように重 ねてある。 そのカードの束に次の操作を繰り返し行う。 操作 作業 1: 一番上にあるカード1枚を, カードの束の一番下に入れる。 作業2: 作業1のあと, 一番上にあるカード1枚を束から取り除く。 n枚のカードの束に対して, カードが1枚になるまで操作を繰り返したとき,最後 に残るカードに書かれた番号を f(n) とする。 (1) n=2のとき、はじめ、2枚のカードがあり, カードに書かれた番号は上から順 に 「1,2」 である。 まず作業1では、1と書かれたカードを束の一番下に入れるから、作業のあと、 カードに書かれた番号は上から順に「2,1」 である。 次に、作業2では, 一番上にある2と書かれたカードを束から取り除くから、作 業のあと、1と書かれたカードだけが残る。 よって, f(2)=1である。 同様にして、 順に求めると, f(3) = ア f(4)= イ である。 3 (数学Ⅰ・数学A 第4問は次ページに続く。) ( 2 3以上の自然数とする。 n=2のとき、束から取り除くカードに書かれた番号は、1回目の操作では ウ であり, 2回目の操作では エムであり、回目の操作ではオ で ある。 8 回目の操作のあと、カードの束にはカ 枚が残り, 一番上にあるカードに 書かれた番号は キ であり, 一番下にあるカードに書かれた番号は ある。 カ 0 1 ⑤ p + 2 p-2 6 2p-2 ⑦ 2p-1 8 2 4 5 2P ② p-1 3 p 2p f(1)=1, f(2)=1,15(3):3,f(4)=1 クの解答群(同じものを繰り返し用いてもよい。) 4 20 ① 5 2p 1 3 ク 5 ④ p+1 5 で (数学Ⅰ・数学A 第4問は次ページに続く。) P=3

未解決 回答数: 1
数学 高校生

セ、ソについて、私は2枚目の右側に書いてある様に考え、円の斜線部分が答えになると思ったのですがなぜ答えと異なってしまうのか教えて下さい!因みに答えは6、7で合ってます。

数学ⅡⅠ 数学 B 第1問 (必答問題) (配点 30) [1] 0 を実数とする。 x の方程式 4x³-3x+sin 30=0 を考える。 (注)この科目には、選択問題があります。 (23ページ参照。) て であることと, sin (20+0) = エ と表せる。 2 sin20= ア sin Acos 0, sin30= I の解答群 となる。 ⑩sin 20 cos0 + cos 20sin0 ② sin 20cos0-cos 20 sin0 したがって ① は オsino- x = sin0, -sint サ cos 20 = 1 sin e であることから, sin30 は sin0を用い sin³0 4x-3x+3sing-45m² (x-sind){4x2+キ (sine)x+ 7sin¹0- ) 12x2sing と変形でき, ① の解を0を用いて表すと コ - ① cos 26cos8+ sin 20sin0 ③ cos 26cose-sin 20sin0 cos o 2 ウ -25inA ± √ 45i ²0- 4 (4 sia-3), =0 4ズーラ(+sing(3-4sin日) 1 - 3+45in 4 (数学ⅡI・数学B 第1問は次ページに続く。) -sing± sine-4sinto +3 42 (4x - 3+45in²0) -sino 510(1-4 -3sin' +3 (1-sin A A A - sin0+ f(0) = sing 4 コ cos 4 g(0)= サス とすると, y=f(8) のグラフの概形はシ y=g(8) のグラフの概形は カスであるら 1 - sine- 0 -3 4sine 4sin' 45ina 45ino-3 3sing-45in' -3 sine +45in 数学ⅡI・数学B = cos y N N in in A O x については,最も適当なものを,次の⑩~⑤のうちから一 つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 サス -0 (数学ⅡⅠ・数学B 第1問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(2)なぜ、まるで囲ったような条件がでてくるのですか?

たす A G 不等式を満たす点の存在範囲 (1) 重要 例題 27 複素数zが|z|≦1を満たすとする。 w=z+2i で表される複素数について (1) 点wの存在範囲を複素数平面上に図示せよ。 (2) 2 の絶対値をr, 偏角を0とするとき, rと0の値の範囲をそれぞれ求めよ。 ただし, 0≦0<2πとする。 基本 21.23 指針 (1) w=z+2iからz=w2iとして、これを|z|≦1に代入。 下の検討も参照。 (2) w=R(cosa+isina) [R>0] として, ドモアブルの定理を利用。 →rはR,0はαで表すことができるから (1) で図示した図形をもとにして,まず R, α のとりうる値の範囲を調べる。 2h fry. Vi b b + 4 1 2 よって 解答 (1) w=z+2iから z=w-2i これを21に代入して |w-2i|≦1 ゆえに,点の全体は, 点2i を中心と する半径1の円の周および内部である。 よって,点の存在範囲は右図の斜 線部分。ただし、境界線を含む (2) WR (cosa+isina) [R>0] とする と よって, 条件から (1) の図から したがって 1≤r≤9 また,右図において OA=2, AB=1,∠ABO= w²=R²(cosa+isina)²=R²(cos 2a+isin 2a) r=R2, 0=2a |i|≤|w|≤|3i| ゆえに 1²≤R²≤3² ∠AOB= π π 6 sas 2 3 WX... ゆえに 4 ゆえに 12/2012/30 π 537 S 2 同様にして 4 よって 1/23 2013/0 -π≤2α≤ 3″ π これは 0≦0<2πを満たす。 <AOC= π 6 検討 不等式 | Z-α|≦r, z-a|≧rの表す不等式 P(z), A(α) とすると, AP= |z-αであるから ① 不等式 | z-α|≦r (r > 0) を満たす点 全体は 点Aを中心とする半径の円の周および内部 ② 不等式|z-α|≧r (r > 0) を満たす点 2 全体は 点Aを中心とする半径rの円の周および外部 である。 (1) AV 0 Xx <P(ω), A (2i) とすると, |w-will を満たす点w は,点Aからの距離が1 以下の点, という意味をも つ。 (bhs (1) の図から, wの絶対値 |w| は, w=3iのとき最大, w=i のとき最小となる。 |w|=R P(z) A(a) ||z-a|≤r O sol C (2) x O 左 B 3:6 1 P(z) 55 A(a). |z-a|zr 1章 4 複素数と図形 x 練習z-21を満たす複素数zに対し, w=z+√2iとする。 点wの存在範囲を 27 複素数平面上に図示せよ。 また の絶対値と偏角の値の範囲を求めよ。ただし、 偏角は 0≦2の範囲で考えよ。 Op.80 EX21

回答募集中 回答数: 0
数学 高校生

コサについて、何故答えは21ではなくて29なのですか?

第3問~第5問は,いずれか2問を選択し、 解答しなさい。 第4問 (選択問題) (配点20) ある商品を生産する工場があり、生産した商品を一 定個数ずつ箱詰めして出荷している。 ただし, 箱は十 分にあり, 以下でいう在庫とは, 箱詰めして出荷でき なかった, 1日単位の商品の個数とする。 このとき次の問いに答えよ。 (1) ある日, 工場で生産した商品を1箱4個入り 1箱8個入りの2種類に振り分 け, 箱詰めして出荷した。 このとき, 考えられる在庫の個数の最大値は である。 ア 個 また, そう考える理由として正しいものは イ の解答群 の解答群 箱詰めされた商品 イ ⑩ 余分に作らないことになっている ① せいぜい在庫は1個か2個である。 ② 1箱8個入りで出荷しているから, 在庫は0~7個である。 ③ 2種類の箱で出荷した商品の合計数は4の倍数になる。 ④ 48の最小公倍数は8である。 180 (2) ある日、工場で生産した商品を 1箱7個入りを (x+1) 箱, 1箱14個入りをx 箱に箱詰めし出荷したところ, 在庫が5個になった。 2種類の箱は, ともに10箱 以上の出荷があった。 このとき、工場で生産した商品の個数の合計として考えられるものは ある。 855 である。 計7(x+1)+14x+5 = 21x+12 ウ 700 で 17,700 63 21 61796 63 ② 264 (数学Ⅰ・数学A 第4問は次ページに続く。) 12 21,264 21 (3) ある日,工場で生産した商品を, 1箱3個入りのAパターン, 1箱5個入りのB パターンとして出荷する。 Aは2箱以上,Bは3箱以上出荷することになってい る。このとき、商品を何個以上生産すれば,生産した商品すべてを出荷し, 在庫を 0にできるかを以下のように計算した。 [計算] A を (s+2) 箱, B を (t +3) 箱 (s≧0, t≧0) 出荷したとすると,商品の1日 の生産個数は全部で (3s + 5t+21) 個となる。 さらに,Bは3箱以上出荷すること から, tは3n, 3n+1,3n+2 (nは0以上の整数) のいずれかで表される。 この とき, 商品の1日の生産個数の合計である 3s + 5t+ 21 について,次のことがい える。 (i) t=3n のとき 21 3s +5t+21=3(s+5n+7) より, 3s + 5t + 21 はエオ以上の3で割り切 れる整数を表す。 (i) t=3n+1 のとき 26 3s +5t+21=3(s+5n+8) +2 より, 3s + 5t +21 は カキ 以上の3で 割って2余る整数を表す。 (i) t = 3n+2 のとき 3s+5t+21=3(s+5n+10) +1 より, 3s + 5t + 21 はクケ以上の3で 割って1余る整数を表す。 したがって, 生産したすべての商品を, A, Bパターンに振り分けて箱詰めする ことにより, 在庫を0にすることができる商品の生産数の最小値ばコサ個であ 21 る。 (4) ある日, 大口の注文があった。 1箱4個入りのAパターンを35箱, 1箱6個入 りのBパターンを43箱受注した。 工場で生産した商品は581個で, A, Bパター 7×5 ンに振り分けて箱詰めすると、 在庫は0になった。 このとき, 自然数 α bの値を求めると b = である。 a= 8 ス 7 35 35a+43b=581 105 70 86 129 30 258 140 (289) 245 20 175 172 215 34438

回答募集中 回答数: 0
数学 高校生

カッコ2番について、赤の下線をつけた部分がなぜそうなるのか分からないので教えて下さい!

〔3〕 スキー競技の「モーグル」 は, こぶのある斜面をスタート地点からゴール地点 まで滑り降りかかった時間によるタイム点, ジャンプ演技によるエア点。ターン の技術によるターン点の合計を競う競技である。 下の表は, 2017年に札幌で行われたある大会の上位16人の得点を表している。 タイム点Xは20点満点, エア点Yも20点満点, ターン点Zは60点満点で, 合 計得点 W は 100点満点である。 エア点とターン点は審判の採点によって決まり, タイム点は斜面を滑り降りるのにかかった時間T (秒) によって決まる。 順位 時間(秒) タイムX (点) エアY(点) ターン Z(点) 合計 W (点) 1 16.86 15.26 53.10 85.22 2 16.25 12.85 53.70 3 15.72 14.40 51.60 4 16.86 13.30 (51.20 5 16.04 15.41 49.70 6 15.69 13.47 50.00 7 15.49 13.60 50.00 8 16.14 10.79 (51.20 9 14.44 14.92 48.50 10 16.53 12.48 47.80 11 14.71 12.81 49.10 12 13.60 10.30 42.60 12.37 6.27 43.60 9.35 8.12 41.00 9.80 7.47 39.60 5.93 7.18 42.80 13 14 15 16 22.20 22.63 23.01 22.20 22.78 23.03 23.17 22.71 23.92 22.43 23.73 24.52 25.40 27.55 27.23 29.99 82.80 81.72 81.36 81.15 79.16 79.09 78.13 77.86 76.81 76.62 66.50 62.24 58.47 56.87 55.91 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0