学年

教科

質問の種類

数学 高校生

高1数学Aのチャートの例題85の(2)の問題です。 メネラウスの定理に関する問題です。 解説で、最初の二行がわかりません。 教えてくれたら嬉しいです🙇‍♀️

三角 の変 理の 470 重要 例図 85 チェバの定理の逆・メネラウスの定理の逆 00000 (1) △ABCの辺BC上に頂点と異なる点D をとり, ∠ADB, ∠ADCの二等分 線が AB, AC と交わる点をそれぞれE, F とすると, AD, BF, CEは1点で 交わることを証明せよ。 AB: AR-5:43 38 VD, BC, DA との交点を,順に Q,R, S, Tとする。 2直線 QS, RT が点 平行四辺形ABCD 内の1点P を通り, 各辺に平行な直線を引き,辺AB, で交わるとき 3点 0, A, Cは1つの直線上にあることを示せ。 指針 (1) △ADB において, ∠ADB の二等分線 DE に対し P.465,466 基本事項 2,4 DA AE DB EB △ADC における ∠ADC の二等分線 DF についても同様に考え,チェバの定理の逆 を適用する。 (2)△PQS と直線OTR にメネラウスの定理を用いて QRPT SO =1 RP TS OQ ここで,平行四辺形の性質から PT, TS, QR, PR を他の線分におき換えてメネラ ウスの定理の逆を適用する。 (1) DE, DF は,それぞれ∠ADB,∠ADCの二等分線で | 内角の二等分線の定理 DA AE DC CF (1) A 3 解答 あるから DB EB, DA FA ゆえに AR AE BD CF DA BD DC = 10 EB DC FA =11 E F DB DC DA よって,チェバの定理の逆により,AD, BF, CE は1点 で交わる。 B D C 31 (2)△PQS と直線 OTR について, メネラウスの定理によ (2) トラウス QRPT SO =1 EX-A9:9J RP TS OQ D A JA at PT=AQ, TS=AB, QR=BC, PR=CS であるから 同外 BCAQ SO -=1 CS ABIOQ QABC SO すなわち =1 AB CS OQ P R BS C よって, メネラウスの定理の逆により, 3点 0, A, CはQBSと3点 0, A, C 1つの直線上にある。 注目。

解決済み 回答数: 1
数学 高校生

A→Pまでの行き方は4通りあるのでそれぞれの確率を求め、足しましたが答えが合いませんでした。なぜでしょうか。

9 経路の問題 右図のような格子状の街路がある. A点からB点まで最短距離で移 動する。図の格子点で,右へ行く確率は1/12 上に行く確率は1/2とする。 ただし, ひとつの方向しか行けない場合は確率1でその方向に進む. A 点からB点まで行くとき, P点, Q 点を通って行く確率をそれぞれ求め よ. (類 中部大工) 経路1つ1つは同様に確からしくない この問題で注意することは 「ひとつの方向しか行けない場合(右図の○印の点) は確率1でその方向に 「進む」 である.このため,経路の1つ1つは同様に確からしくならない. 例えば右図のR1 のように移動する確率は, ○印の点を5回, それ以外の R1 点は (A を含めて)4回通るので,15×(1/2)" であり,R2のように移動する R2 A 6 確率は 13×(1/2) である.ここでは書きこみ方式(場合の数の ○10 参照) で解いてみるが, 〇印の点を何回通るかを考えて計算してもよい。 P B B 必ずB に到達する 上側と右側がカベになっているので,必ずBに到達する.つまり,「Qを通っ てBに行く確率」 は 「Q を通る確率」であり, QB は考える必要がない. 問題文に惑わされないよう にしよう. QからどうろろくてもBにたどりつ 解答 (最知りなので右上しかいけど) 下図の点 X,Yに到達する確率がそれぞれx,yのとき, Zに到達する確率は,Yは右端でない点 Xが上端のときェ+ 1/12y,それ以外のとき 1/2(x+y)である。 3 7+57 X1Z X XC × (4)² (±)², C, C-3 27 12 6 Iz 16 1 16 32 64 24 22 64 128 IP B 全て同じ2を reblind 322

解決済み 回答数: 1
数学 高校生

この漸化式の解法が理解できません(´・ω・`) 2枚目の画像の方法でしかやったことがないので こっちの方法でできるならこの方法でやりたいです。 回答よろしくお願いします🙇🏻‍♀️⸒⸒

基本例 d =1 例 37m+= panta 00000 型の漸化式 an+1= an によって定められる数列{an) の一般項を求めよ。 [類 早稲田大] 基本 34 重要 46 \ 指針 Q+1= an panta ーのように、分子がan の項だけの分数形の漸化式の解法の手順は 漸化式の両辺の逆数をとると 2 1=bm とおくと 1 Gn+1 ·=p+- 9 an bn+1=p+qb bat1=ba+の形に帰着。 計 答 an 464 基本例題 34 と同様にして一般項 b が求められる。 また逆数を考えるために,(n≧1)であることを示しておく。 CHART 漸化式 an+1= am pantg 両辺の逆数をとる 469 An+1= an 4an-1 ①とする。 ①において, an+1=0とすると α = 0 であるから, α=0 となるnがあると仮定すると an-1=an2=......=α=0 ところがα= 1/2(0)であるから,これは矛盾。 4a-05 a-1=0 これから an-2=0 以後これを繰り返す。 漸化式と数列 5 よって、すべての自然数nについて α0である。 ①の両辺の逆数をとると 逆数をとるための十分条 件。 1 4 an+1 an 1 4a-1 A An+1 an 両 両法 法 1 _=bm とおくと bn+1=4-bn an これを変形すると bn+1-2=-(b-2) 計算 1 また b1-2= -2=5-2=3 や ai ゆえに、数列 {bm-2} は初項3, 公比-1の等比数列で n-1 bm-2=3(-1) すなわち bm=3(-1)"'+2 したがって an= 1 1 bn3.(-1)"'+2 特性方程式 α = 4-α から α=2 b= という式の形か 1 an 5 b=0 NC 国分数形の漸化式 α+1= rants (s0) の場合については, p.484, 485 の重要例題 46, pantg 47で扱っている。 37 = 1, an+1= 3an 6an+1 によって定められる数列{a} の一般項を求めよ。 C:-1 buii+1=3(bit1)

解決済み 回答数: 1
数学 高校生

はじめまして数学に関する質問です。 問題を解提出をしたのですがダメだと言うことでした。 赤で書かれているQCについても考えるとあるのですが、 どのようにすればよいのでしょうか。 分かる方いらっしゃったら教えてくださいよろしくお願いします。

016 最大最小の応用 ∠C=90°, AC=4, BC=8の△ABCがある。 最初、点Pは点Cに点Qは点Bにあり、同時に出発し て点Pは辺CA上を毎秒1の速さで点Aまで動き,点Q は辺BC上を毎秒2の速さで点Cまで動くものとする。 このとき、CPQの面積は、2点P Q が出発してから ア秒後に最大値 イ をとる。 B 後に人をすると、 定義域 CP-2 CQ = 3-2x APQC = (8-27) x x x = Y == =4x-x=yとおく ↓ =(2²-4x)- -(x-2)+4 ✓0≦x≦4 なぜ 気は4秒後にAに着くことから、点PがCA上 を移動しているのは0秒後から4秒後 点は、4秒後に書くため、点が他に を移動するのは○秒後から4秒後 よって、は、0≦x≦の範囲の値を 取る。 == (x-2)² 1x (-1) アニコ 定義域を考えて(グラフを考えて) 0秒のときは、移動していないので 三角形はできません。 506x54 LACの長さ QCについても同様に考える。 イニチ 何? 最大店や最小値を求める 1=(x-2)+4+40≦4における最大値は(2-2=0 となるときすなわち)x=2のとき最大値はた牛、 ✓同じく最小値は、x=0、x=4の時のYo 頂点を含むときは、ここで最大

解決済み 回答数: 2