学年

教科

質問の種類

数学 高校生

なぜマイナスをつけていないのでしょうか?教えてください。−(xの2乗+2x−a+2)=0の判別式DについてD>0にしてやってはいけない理由を教えてください。お願いします。

基本 例題 95 関数が極値をもつための条件 0000 a 2 は定数とする。 関数f(x)= x+1 x2+2x+a について,次の条件を満たすαの値ま たは範囲をそれぞれ求めよ。 (1) f(x) がx=1で極値をとる。 (2) f(x) 極値をもつ。 /p.162 基本事項 2 基本 94 重要 96 指針 f(x) は微分可能であるから f(x) が極値をもつ⇔ [[1] f (x)=0となる実数αが存在する。 [[2] x=αの前後でf'(x) の符号が変わる。 まず必要条件 [1] を求め, それが十分条 件 [2] も満たす) かどうかを調べる。 f'(x) f'(x)=0 0=(2 f'(x) f'(x)\ 極 f'(x) <0 <0 >0 小 f'(x) = 0 (1) f(1) = 0 を満たすαの値 (必要条件) を求めてf(x)に代入し, x=1の前後で f(x) の符号が変わる (十分条件) ことを調べる。き TRAHD (2) f'(x)=0が実数解をもつためのαの条件(必要条件) を求め、その条件のもとで, f'(x) の符号が変わる (十分条件)ことを調べる。 なお,極値をとるxの値が分母を0としないことを確認すること。 4 章 1 内 AR 90 f'(x)= 定義域は,x2+2x+α≠0 を満たすxの値である。f(x)の分母)≠0 1(x2+2x+a)(x+1)(2x+2) 2+2x-a+2 u'v-uv (x2+2x+α)2 x2+2x+α) 2 v2 (1) f(x) は x=1で微分可能であり、 x=1で極値をとる とき f'(1) = 0 第1 必要条件。 (分子)=1+2-a+2=0, (分母)=(1+2+α)20( よって α=5 このときf'(x)=(x+3)(x-1) <a=5は の解。 (x2+2x+5)2 ゆえに、f'(x) の符号はx=1の前後で正から負に変わ十分条件であることを示 り, f(x) は極大値 f(1) をとる。 したがってd=5 0x (2)f(x)が極値をもつとき, f'(x)=0となるxの値が(この確認を忘れずに!) あり, x=cの前後でf (x) の符号が変わる。(x) よって, 2次方程式x2+2x-a+2=0の判別式Dにつ て D0 すなわち 12-1 (-α+2)>0 これを解いて a>1 このとき,f'(x)の分母について {(x+1)'+α-1}^≠0 であり、f'(x)の符号はx=cの前後で変わるからf(x) は極値をもつ。 したがって a>1 x=c(C1とC2の2つ)の前 後でf'(x) の符号が変わる。 =x+2x-a+2 x + + C1 C2 x

解決済み 回答数: 1
数学 高校生

(2)の解答で、でなぜこの場合は、精講②『軸の動きうる範囲』と③『頂点のy座標の符号』は書かなくていいのですか? 教えてください。

15 解の配置 2次方程式 2-2ax+4=0 が次の条件をみたすようなαの範 囲をそれぞれ定めよ. (1) 2解がともに1より大きい. _(2) 1つの解が1より大きく, 他の解が1より小さい。 (3) 2解がともに0と3の間にある. (4) 2解が0と2の間と24の間に1つずつある. 注 「異なる2解」 とかいていないときは重解の場合も含めて考えます. (2) f(x)=0 の1つの解が1より大きく、他の解 左 が1より小さいとき, y=f(x) のグラフは右図. y=f(x) IC 5 よって, f(1)=5-2a< 0 a> 注 この場合、精講②③は不要です。 (3) f(x)=0の2解がともに0と3の間にあると き, y=f(x) のグラフは右図. y=f(x) よって、 次の連立不等式が成立する. [f(0)=4>0 <精講① O 3 X f(3)=13-6a>0 <精講① 4-a2 0<a <3 <精講② 解の条件を使って係数の関係式を求めるときは, グラフを利用しま す。その際,グラフの次の部分に着目して解答をつくっていきます。 4-a²≤0 <精講③ 13 ② 軸の動きうる範囲 ①あるxの値に対するyの値の符号 ③頂点の座標 (または、判別式) の符号 のように, 方程式の解を空の よって,a< 12 かつ0<a<3 かつ a≦-2 または 2≦a」 下図の数直線より,2≦a< 20 13

解決済み 回答数: 1
数学 高校生

解の存在範囲の問題です。手順1のD>0の時のaの範囲を求めるとき、単純に因数分解できなかったので解の公式を使って因数分解しようとしたらDの中身が負になってしまいました。解答の平方完成でDが常に正だと言うのはわかったのですが、解の公式で求めたaは何を表すのでしょうか。

基本 例題 128 2次方程式の解と数の大小 (1) ①①①① | 2次方程式 x2-2(a+1)x+3a=0が, -1≦x≦3の範囲に異なる2つの実数解を もつような定数αの値の範囲を求めよ。 [類 東北大 ] 基本 126 127 重要 130 2次方程式 f(x)=0 の解と数の大小については,y=f(x)のグラフとx軸の共有点の 位置関係を考えることで,基本例題126 127 で学習した方法が使える。 すなわち, f(x)=x2-2(a+1)x+3a として 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ ★ ⇔ 放物線y=f(x) がx軸の-1≦x≦3の部分と, 異なる2点で交わる したがって D>0, -1< (軸の位置)<3,f(-1)≧0,f (3)≧0 で解決。 CHART 2次方程式の解と数の大小 グラフ利用 D, 軸, f(k) に着目 この方程式の判別式をDとし, f (x)=x2-2(a+1)x+3a 3章 13 2次不等式 解答 とする。 y=f(x) のグラフは下に凸の放物線で,その軸は 直線x=α+1である。 THAHO de 方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数指針」 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と, 異なる2点で交わることである。 すなわち、次の [1]~[4] が同時に成り立つことである。 [1] D > 0 [2] 軸が-1<x<3の範囲にある [3] f(-1)≧0 [4] (3) 吹 の方針。 2次方程式についての問 題を, 2次関数のグラフ におき換えて考える。 よって, D>0は常に成り立つ。 ゆえに [1] D={-(a+1)-1・3a=a-a+1=(a-1/2)+3 (*) (+)-(-1<()<3 [2] 軸x=α+1について −1<a+1<3 I+D)-SD(S)\ すなわち -2<a<2 [3] f(-1)≧0から ...... ①のと (−1)-2(a+1)(-1)+3a0 2つもつこと3 5a+30 すなわち a ≧ - 5 になり + Oa+1 3 21 x (一)(1+\2 この問題では, Dの符号, 軸の位置だけでなく,区 間の両端の値 f(-1), f (3) の符号についての 条件も必要となる。 YA [4] f(3) ≧0 からと32-2(a+1)・3+3a≧0 ゆえに3a+30 すなわち a≦1 ③ to) ① ② ③ の共通範囲を求めて -> -2 3 1 2 a 3 5 -≤a≤1 5 注意 [1]の(*)のように, αの値に関係なく、常に成り立つ条件もある。

解決済み 回答数: 1
数学 高校生

高一数1 青チャート 二次関数 付箋の質問に答えていただきたいです。よろしくお願いします。

210 基本 00000 127 放物線とx軸の共有点の位置 (2) 2次関数y=x-(a+3)x+αのグラフが次の条件を満たすように、定数αの値 の範囲を定めよ。 (1) ・軸のx>1の部分と異なる2点で交わる。 ・軸のx>1の部分とx<1の部分で交わる。 指針 (2)( 基本126 ここでは0以 前の例題ではx軸の正負の部分との共有点についての問題であった。 外の数々との大小に関して考えるが, グラフをイメージして考える方針は変わらな い。 (1) D0. (軸の位置)>1, j(1)>0 を満たすように、定数αの値の範囲を定める。 (2) f(1)<0 基本例 1282次方程式の解と数の大小 (1) 00000 2次方程式-2(a+1)x+34=0が, -1x3の範囲に異なる2つの実数解を もつような定数の値の範囲を求めよ。 [類 東北大]基本 126 127 130 指針 2次方程式(x)=0の解と数の大小については、y=f(x)のグラフとの共有点の 位置関係を考えることで、基本例題 126 127 で学習した方法が使える。 ★ すなわち, f(x)=x^2(a+1)x+34 として 2次方程式(x)=0)が1x3で異なる2つの実数解をもつ 放物線y=f(x)がx軸の16x3の部分と、 異なる2点で交わる したがってD>0, -1 < (軸の位置) <3(-1)≧0 (3) 20で解決。 211 CHART 2次方程式の解と数々の大小 グラフ利用 D..∫(k) に着目 ③ のみか? b f(x)=x-(a+3)x+α²とし, 2次方程式f(x)=0の判別式をDとする。 af である。 解答 y=f(x)のグラフは下に凸の放物線で, その軸は直線x= (1) y=f(x) のグラフがx軸のx>1の部分と異なる2 点で交わるための条件は、次の [1] [2] [3] が同時 に成り立つことである 20 [(軸)>1] この方程式の判別式をDとし, f(x)=x2(a+1)x+3a 解答とする。 y=f(x)のグラフは下に凸の放物線で、その軸は 直線x=α+1である。 ② 33 65 21軸がx>1の範囲にある 0 1 +3 よって =-3(a+1)(a-3) -1<a<3 DP [3]f(1)> [1] D=f-(a+3)}-4・1・α°=-3(α-24-3) D0 から (a+1) (a−3) <0 [2] 軸x=aについて 2 ゆえに a+3>2 すなわち 4>1 [3] f(1)=12-(a+3) ・1+α²=a-a-2=(a+1) (a-2) f (1) > 0 から a<-1, 2<a ...... ① a+3 1 ① ② ③ の共通範囲を求めて ...... ③ 2<a<3 (2) y=f(x) のグラフがx軸のx>1の部分とx<1の 部分で交わるための条件は ゆえに (a+1) (a-2) <0 すなわち -1<a<2 (1)<0 注意 例題 126, 127 では 2次関数のグラフとx軸の共有点の位置 -1 a 0 x O に関する問題を取り上げたが、 この内容は, 下の練習 127 の ように, 2次方程式の解の存在範囲の問題として出題されることも多い。 しかし 2次方程 式の問題であっても, 2次関数のグラフをイメージして考えることは同じである。 練習 2次方程式 2x2+ax+α=0が次の条件を満たすように, 定数 α の値の範囲を定めよ。 ② 127 (1) ともに1より小さい異なる2つの解をもつ。 (2)3より大きい解と3より小さい解をもつ。 方程式 f(x)=0が1≦x≦3の範囲に異なる2つの実数 指針」 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と、 異なる2点で交わることである。 すなわち、次の [1] ~ [日が同時に成り立つことである。 D> 0 [21 軸が-1 <x<3 の範囲にある [3] (-1)≥0 [4] (3)≥0 [1] 41=(-(a+1)-1・3a=a-a+1= (a-212)1+1/20 よって, D>0は常に成り立つ。 (*) [2] 軸x=α+1について -1<a+1<3 すなわち -2<a<2 ...... ① [3] f(-1)≧0から (-1)-2(a+1)(-1)+3a≥0 (127(1),(2)(128について、 (27(1)、128のように 3 の方針。 2次方程式についての間 題を 2次関数のグラフ におき換えて考える。 この問題では, D の符号、 軸の位置だけでなく、区 間の両端の値(-1). /(3)の符号についての 条件も必要となる。 __1() <3 35 12次不等式 [(27(2) [1][2][3]確かめ D,軸、f(F)を考えるときと、☆ (27(土)のように f(k)のみ(D.軸は考えない) 問題はどのように見分ければ たり、 128 を[3][4]だけ 確かめたり、 でも良いのではないか? と思ってしまいました。 良いですか?☆の3要素が重要な区別の仕方を教えて 下さい! 親は分かるのですが、

解決済み 回答数: 3
数学 高校生

黄チャートの数Iの例題65の問題で、赤の線で引いているところがわかりません。解説よろしくお願いします🙇‍♀️

α は定数とする。 a= めよ。 CHART & SOLUTION 定義域全体が動く場合の2次関数の最大・最小 大 軸と定義域の位置関係で場合分け 1=(S)=(0)\ 定義域が a≦x≦a+2であるから,文字αの値が増加すると定義域全体が右へ移 また (α+2)-α=2であるから、定義域の幅が2で一定。 軸の位置が[1] 定義域の右外 [2] 定義域内 [3] 定義域の左外にある場合に分けて 解答 f(x)=x²-2x+2=(x-1)2+1 この関数のグラフは下に凸の放物線で, 軸は直線 x=1 であ 基本形に変 る。 [1] α+2 <1 すなわち [1] |軸 10 [1] 軸が定義 α < −1 のとき るから,定 図 [1] から, x=α+2 で最小とな 最小となる る。 最小値は f(a+2)=a2+2a +2 |x=1 x=a x=a+2 [2]a≦1≦a+2 すなわち [2] -1≦a≦1 のとき 図 [2] から, x=1で最小となる。 最小値は f(1)=1 最小 x=ax=1x =α+2 [3] 1 <α のとき [3] 軸 図 [3] から, x=αで最小となる。 最小値は f(a)=a2-2a+2 ← 1≦a+2 か -1≤a [2]軸が定義 ら, 頂点で [3]軸が定義 あるから,定 最小となる |最小 x=1x=ax=a+2 x=1 で最小値1 [1]~[3] から α < −1 のとき -1≦a≦1 のとき α>1のとき x=αで最小値α2-2a+2 書く。 x=α+2 で最小値α² +2a+2 答えを最後

解決済み 回答数: 1