学年

教科

質問の種類

数学 高校生

四角で囲ったところなんですけど、どうしてこの記述が必要なのですか?

000 重要 121 いう。 おく y+3 2 すると、 X9 重要 例題 90 2変数関数の最大・最小 (2) (1) x, y の関数P = x2 +3y'+4x-6y+2の最小値を求めよ。 (2) x, yの関数 Q=x²-2xy+2y2-2y+4x+6の最小値を求めよ。 なお,(1),(2)では, 最小値をとるときのx, yの値も示せ。 指針 [(2) 類 摂南大] 基本79 (特に条件が示されていないから,x,yは互いに関係なく値をとる変数である。 このようなときは、次のように考えるとよい。 xのうちの一方の文字(ここでは」とする)を定数と考えて,Pをまずx 2次式とみる。そして,Pを基本形α(xb)+gに変形。 ②残ったg(yの2次式)も、基本形6(y-r) '+s に変形。 ③ P=ax2+by's (a>0,b>0,sは定数)の形。 →PはX=Y=0のとき最小値sをとる。 151 →8みたいやつ (2)xyの項があるが, 方針は (1) と同じ。 Q=a{x-(by+c)}+d(y-r)'+s の形に変 逆に条件式があるってどんなの? 形。 CHART 条件式のない2変数関数 一方の文字を定数とみて処理 3章 ⑩ 2次関数の最大・最小と決定 で、代 (1) P=x2+4x+3y2-6y+2 30 O =(x+2)2-22+3y2-6y+2 まず, xについて基本形に。 解答 =(x+2)+3(y-1)2-3・12−2 次に, yについて基本形に。 =(x+2)2+3(y-1)2-5 プラフ なんのため? 三域は x, y は実数であるから 最 最小 (x+2)20, (y-1)^≧0 よって, P は x+2=0, y-1=0のとき最小となる。 ほう <P=aX2+ by +s の形。 (実数) 20 x+2=0, y-1=0 を解く と x=-2, y=1 ゆえに x=-2,y=1のとき最小値-5 (2)Q=x²-2xy+2y2-2y+4x+6 デビー2(y-2)x+2y2-246 ={x-(y-2)}2-(y-2)^+2y2-2y+6 =(x-y+2)^+y2+2y+2 =(x-y+2)^+(y+1)^-12+2 ここにxが x²+x+口の形に。 のこらないように まず, xについて基本形に。 する!! 次に, yについて基本形に。 Q=ax2+by2+s の形。 (実数) 20 =(x-y+2)+(y+1)+1 x,yは実数であるから (x-y+2)^≧0. (v+1)^≧0 よって,Qはx-y+2=0, y+1=0のとき最小とな る。x-y+2=0, y+1=0を解くとx=-3, y=-1 最小値をとるx,yの値は, ゆえに x=-3, y=-1のとき最小値1 連立方程式の解。 練習 (1) x, y の関数 P=2x2+y2-4x+10y-2の最小値を求めよ。 90 (2) r

解決済み 回答数: 1
数学 高校生

高校分野の因数分解は地道に当てはまる数を求めていくしかないのでしょうか。解き方のコツなどあれば教えてくださると助かります🙇‍♀️

15. 高校数学の探究 (2) (1) 52% 高 例28 例26の展開の公式から, 次の因数分解の公式が成り立つ。 acx2+(ad+bc)x+bd=(ax+b)(cx+d) この公式を利用して, 2次式 3x2 + 14x + 8 を因数分解せよ。 解説 公式 acx2+(ad+bc)x+bd=(ax+b)(cx+d) において, ac=3, ad+bc=14, bd=8 となる a, b, c, d を見つければよいことになる。 ac=3なので,a=1,c=3 と考えてみる。 これに対して, ad+bc >0より, 6>0, d>0で ある。 よって, bd=8 を満たす b, dの組として, 次の4つが考えられる。 [b=1 ① ② |d=8 [b=2 |d=4 (b=4 b=8 33 ④ |ld=2 |d=1 この中で, ad+ bc = 14 を満たすものを見つければよい。 それぞれについて, ad + bc を計算すると [b=1 ① ad+bc=1x8 + 1x3 = 11 |d=8 |b=2 ad+bc = 1×4+ 2x3 = 10 |d=4 [b=4 (3) ad+bc = 1×2+ 4×3 = 14 |d=2 [b=8 ④ ad+bc = 1x 1 + 8x3 = 25 |d=1 したがって、条件を満たすb, dは③で, a=1,b=4,c=3,d=2 となる。 解答 3x2+14x+8=(x+4)(3x+2) [参考] 因数分解が正しいかどうかを確かめたいときは, 右辺を展開してみればよい。 例28の解説で行った計算は,次のように書いて行うと少し簡単になる。 a X bc C d ad ac bd ad+bc (3) 1 4 → 12 3 2 → 2 3 8 14 このように書いて行う因数分解を, たすき掛けの因数分解という。 以下のたすき掛けは,条件を満たさない組 (失敗した例)である。 ① 1 33 1 8 8 (2) 1 1 → 3 1 8 3 11 3 ↑↑ 24 100 8 ④4) 6 1 4 10 3 3 3- 81 8 ← ← 24 1 25

解決済み 回答数: 1