学年

教科

質問の種類

数学 高校生

√1+f(x)'の公式に当てはめて解いたのですが、回答の答えにはなりませんでした。これでは解けないのでしょうか?教えて頂きたいです。よろしくお願いします。

(5)) 2sin/128-tcos/1/2 (s)tsin/1/2 1 (6) (L) 12 (6XL)*+* 2 ■解説 ≪媒介変数表示された曲線の形状と長さおよび面積≫ =0とおくと, sin00 (π<< より 00 dy sin O (1)・(2) dx 1 + cos 0 このときy=0である。 また, -π<< πにおいて よって, 曲線Cは点 (0,0)においてx軸に接する。(→(あ) (レ dx de から,g(-π) <x<g(x)より =1+cos0 >0よりx=g(0) は単調増加だ dy さらに, de x=(→(う)(え)) -=h' (0)=sin0より,y=h(0) の増減表は次のようになる。 0≦y<2 (→(お), (カ)) 1 + 0 7 これより (020g+1) なお, 曲線Cの概形は次のようになる。 O 2 2 0.200 大阪 dy d0-> 2cos2d0-4sin-4sin (4) Pr(t+sint, 1-cost) 0=1のとき 方程式は sint = 1+cost y-(1-cost) - do (-4431) sint dt 1+cost であるから、もの (x-(t+sint)) (0<K<x) ここで,y=0とおくと, (1-cos't) =sintlx-(1+sin()), sint*0より よって -(1-cos³t) sint +(t+sint) =-sint+ (t+ sint) =t (→()) Qi(t. 0) =OP-OQ Q.P= = (t+sint, 1-cost) - (t, 0) = (sint, 1-cost) 2. =(2sin/12 cos/122sin2-12) = 2 sin 27 (cos 27. sin 172) ...... ① 0 (-π) 0 (π) dy nie. 0 do Ob y 2 となるので、Q.P がx軸の正の向きとなす角は 12 ラジアン( 10203-1 0 (-π) ... 20 x 一π x y 2 π (π) 0 V 0 V π 2 とする。また,P, Q 接線がそれぞれPi, Q 接線に移動した (5) 回転する前のC上の点Pがx軸との接点になったときの曲線をC とする。このとき t OP' = L (t) = 4 sin 2 dx (3) + do (d)² = (1 + cos 0)² + (sin 0) 2 =2(1+cos0)=4cos' 0≧≦t<zにおいてcos->0であるから 20 8-2 ①よりP/Q=PQ=2sin であるので OQ=OP-P/Q=4sin/2-2sin/2 = 2 sin/20 また,Q,R, OQtであることと,(4)の結果より

回答募集中 回答数: 0
数学 高校生

(1)のp₂について質問です。 一回目と二回目のカードの数字がかぶった時以外を2パターンの取り出し方と考えると右の画像のようになり、答えが17/25となったのですが、なぜ解答よりも多くなってしまうのでしょうか🙏🙇‍♀️

問 136 確率と漸化式 袋の中に 1, 2, 3, 4,5の数字のかかれたカードが1枚ずつ入っ た数字を記録し,もとにもどすという操作をくり返す. 1回目か ている.この袋の中から, 1枚カードを取り出し, それにかかれ らん回目までに記録された数字の総和を Sn とし, Snが偶数であ 確率をn とおく. このとき, 次の問いに答えよ (1) p1, 2を求めよ. (2) n+1 を pm で表せ. (3)nnで表せ (1)確率の問題ではこのような設問がよく見受けられますが、これ |精講 は単に点数をあげるための設問ではありません.これを通して問 題のイメージをつかみ, 一般的な状態((2)) での考える方針をつかんでほ しいという意味があります。」 (2)確率の問題で漸化式を作るとき,まず, 確率記号の右下の文字(添字)に着 目します.ここでは,nn+1の関係式を作るので, n回終了時の状況を スタートにして,あと1回の操作でどのようなことが起これば、 目的の事態 が起こるか考えます。 このとき,図で考えると式が立てやすくなります。 (3) 漸化式の処理ができれば、 何の問題もありません. 解答 25 (1) について 1回目に2か4のカードが出ればよいので, か= (2) 次の2つの場合が考えられる. ① 1回目が偶数のとき 2回目も偶数 ② 1回目が奇数のとき2回目も奇数 ①,②は排反だから, p2= x2 3 3 13 25 数字ではなく 偶奇で考える

解決済み 回答数: 1
数学 高校生

(2)を解くとき、何から始めれば良いか分からなくて解けません。どんな思考回路で解けば良いですか?

CER FACITY 134 漸化式の応用 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で変わらないとき、これらの直線によって平面がan個 の部分に分けられるとする. (1) α1, a2, as を求めよ. (2) n本の直線が引いてあり, あらたに (n+1) 本目の直線を引 いたとき、もとのn本の直線と何か所で交わるか. (3) (2)を利用して, an+1 を an で表せ (4) an を求めよ. 精講 まず設問の意味を正しくとらえないといけません. nが含まれて いるとわかりにくいので,nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. (3)が最大のテーマです。 「an+をαで表せ」という要求のときに, 41, a2 α などから様子を探るのも1つの手ですが,それは137以降 (数学的帰納法)に まかせることにします。ここでは,一般に考えるときにはどのように考えるか を学習します。 nant の違いは直線の本数が1本増えることです. 線と サト 大点によって,(n+1)本目の直線は,2つ ある直 の半直線と (n-1) 個の線分に分割されている (下図).. ② ③ ① 1本目 (n+1) (n+1)本目の直線 A 2本目3本目 この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. よって, (n+1) 本目の直線によって, 平面の部分は (n+1) 個増える ことになる. 本目 (4)n≧2のとき, an+1=an+n+1 (n≧1) f(n)の形やで 階差数列 (123 n-1 an=a1+(k+1)=2+2+3+..+n) k=1 =(1+2+…+n)+1-1/2n(n+1)+1/12 (2) これは, n=1のときも含む. 吟味を忘れずに ポイント 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります. 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、その変化を追う 解答 (1) (a₁) (a2) (a3) 第7章 ② ④ 27 ⑤ ③ 演習問題 134 ④ 右図のように円 01,02, 直線 ・は互いに接し、かつ点Cで交わる半 に内接している。このとき、次の問いに答えよ. 12 図より, a1=2 図より, a2=4 図より α3=7 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって、nが所で交わる (1)円の半径が5CA の長さが12で あるとき,円の半径 12 を求めよ. (2)番目の円の半径を1とすると (2) きっと+1の関係式を求めよ. 02 -11 A2 Al

回答募集中 回答数: 0
数学 高校生

丸で囲んだところについてです。 線分AP,PBはCより下にあることが示されていないのに、図のようになるので、と記述しても良いのでしょうか。設問または回答の都合上省略されているのでしょうか。教えていただきたいです。

6 第6章 積分法の応用 Think 例題183 面積の最小値 ***** 関数 y=logx で表される曲線をCとする. C上の2定点A(1, 0) Be, 1) と, C上の動点P(t, logt) (1<t <e) がある. 線分AP と曲線 Cで囲まれた図形の面積を S,, 線分 PB と曲線 C で囲まれた図形の面積を S2 とする. S+S2の最小値とそのときの値を求めよ. [考え方 グラフをかいて考える (大阪教育大) y=logx| B P y そのときの値の範囲 (1<t<e) に注意する. S=S+S は tの関数になるので, S を tで微分するこ とにより, 最小値を求める. log t A QR O 1 te I 解答 図をかくと、右のようになり、Sは, A B P. 44 (2) となっている. S=S+S2 とすると, 右上の図より s=logxdx-12(t-1)logt-12(e-t)(1+logt) = [xlogx-x-12((t-1)+(e-togt-1/2(e-t) (e-1)logt (e-t) =e-e-(0-1)- 1)-(-1) =-1/2(e-1)logt+/12/12+1 e-1 したがって, S'= + 2t e|21|2 t-(e-1) P 4ogt; AS logt: 三角形 B P log t 台形 Q R Slogxdx =xl0gx-fds 2t =xlogx-x+C S' = 0 とすると, t=e-1 Sの増減表は次のようになる. t 1 e-1 e S' 0 + S 極小 7 よって, Sの最小値は, t=e-1のとき. 01/21/12(e-1)10g (e-1) log (e-1) 練習 183 を通るとき, 曲線 y=f(x) とx軸とで囲まれる部分の面積Sの最小値とその >0,0<a<1 のとき,f(x)=mx(ax-1)^ とおく. 曲線 y=f(x) 点 (1.1) *** ときのαの値を求めよ. (大同大改) p.426

解決済み 回答数: 1
数学 高校生

この問題のアで条件付き確率を求めた時1/2が正解なのですが、 何故でしょうか? 私的には3ページのようにといたのですが… 解説お願いします! (設問イウのことでは無いです❌もしアで解いたら…ということです!)

第4問 (配点 20 ) SACE 箱の中に異なる10個のさいころがあり、1個だけ不良品が含まれている。 良品のさいころを1回投げると,6の目が の確率で出て、他の目はそれぞれ 1 10 の確率で出る。良品のさいころはどの目も 6 の確率で出る。 太郎さんと花子さんは,箱の中から1個のさいころを取り出したとき,それが 不良品かどうかを, さいころを何回か投げて6の目が出た回数によって予測でき るかどうかを調べている。 箱の中から1個のさいころを取り出したとき,そのさいころが不良品である事 象をAとし,取り出したさいころを1回投げて6の目が出る事象をBとする。 また,事象 A が起こらないという事象を A と表す。 取り出したさいころが不良品であったときに,そのさいころを1回投げて6の 目が出る条件付き確率を事象 A, B を用いて表すと と表される。 ア ア の解答群 ⑩ P(A) ⓘ P(A∩B) P(B) P(A∩B) P(A∩B) P(A) P(A) P(B) 箱の中から1個のさいころを取り出して,そのさいころを1回投げて6の目が イ 出たとき,そのさいころが不良品である条件付き確率は である。 ウ

解決済み 回答数: 1