数学
高校生
解決済み

丸で囲んだところについてです。
線分AP,PBはCより下にあることが示されていないのに、図のようになるので、と記述しても良いのでしょうか。設問または回答の都合上省略されているのでしょうか。教えていただきたいです。

6 第6章 積分法の応用 Think 例題183 面積の最小値 ***** 関数 y=logx で表される曲線をCとする. C上の2定点A(1, 0) Be, 1) と, C上の動点P(t, logt) (1<t <e) がある. 線分AP と曲線 Cで囲まれた図形の面積を S,, 線分 PB と曲線 C で囲まれた図形の面積を S2 とする. S+S2の最小値とそのときの値を求めよ. [考え方 グラフをかいて考える (大阪教育大) y=logx| B P y そのときの値の範囲 (1<t<e) に注意する. S=S+S は tの関数になるので, S を tで微分するこ とにより, 最小値を求める. log t A QR O 1 te I 解答 図をかくと、右のようになり、Sは, A B P. 44 (2) となっている. S=S+S2 とすると, 右上の図より s=logxdx-12(t-1)logt-12(e-t)(1+logt) = [xlogx-x-12((t-1)+(e-togt-1/2(e-t) (e-1)logt (e-t) =e-e-(0-1)- 1)-(-1) =-1/2(e-1)logt+/12/12+1 e-1 したがって, S'= + 2t e|21|2 t-(e-1) P 4ogt; AS logt: 三角形 B P log t 台形 Q R Slogxdx =xl0gx-fds 2t =xlogx-x+C S' = 0 とすると, t=e-1 Sの増減表は次のようになる. t 1 e-1 e S' 0 + S 極小 7 よって, Sの最小値は, t=e-1のとき. 01/21/12(e-1)10g (e-1) log (e-1) 練習 183 を通るとき, 曲線 y=f(x) とx軸とで囲まれる部分の面積Sの最小値とその >0,0<a<1 のとき,f(x)=mx(ax-1)^ とおく. 曲線 y=f(x) 点 (1.1) *** ときのαの値を求めよ. (大同大改) p.426

回答

✨ ベストアンサー ✨

ぼくが高校の時は図が根拠になると習いました。逆にもし図を描かないのであれば、関数の凸性や、上下関係をはっきり示せとも教えられました

pcm529

正しい図(グラフ)が根拠となるのは納得できるのですが、その図が正しいといえる根拠が上記の回答にはないので、図のようになるのでと記述してよいのかがわからないです…

らい

y=logx程度であれば問題ないです。

必要な時は小問でグラフの概形を書けと言われている時ぐらいです。

ただ交点を出さないといけない時などは、回答に方程式を解いた過程を書く方がいいと思います

この回答にコメントする
疑問は解決しましたか?