学年

教科

質問の種類

数学 高校生

(1)の問題が解説を読んでもいまいちわかりません。 教えてください🙏

32 基本 例題 46 連続して硬貨の表が出る確率は立 次の確率を求めよ。 00000 1枚の硬貨を4回投げたとき,表が続けて2回以上出る確率 1枚の硬貨を5回投げたとき,表が続けて2回以上出ることがない確率 CHART & SOLUTION 3つ以上の独立な試行 (1) p.329 基本事項 行)の問題でも 28 FA 独立なら積を計算が適用できる。 また、 「続けて~回以上出る確率」 の問題では,各回の 結果を記号 (○やx)で表して場合分けをすると見通しがよい。 (1) 何回目から表が続けて出るかで場合分けする。 (2) 「~でない」 には 余事象の確率 解答 各回について,表が出る場合を◯, 裏が出る場合を× どち らが出てもよい場合を△で表す。 (1) 表が2回以上続けて出るの は、右のような場合である。 よって, 求める確率は 1回 2回 3回 4回 (2)x1+(1/2)×1 +1x| (1/2)=1/2 △ OOX △ OOD △ 1回目から続けて出る。 △ ○ ← 2回目から続けて出る。 3回目から続けて出る。 (2) 表が2回以上続けて出る のは,右のような場合であ り,その確率は (2)x1+(1/2)x1°+1 (x(21)x1+(1/2)+(1/2) +(1/1)= 19 32 よって, 求める確率は 19 13 1- 32 32 1回 2回 3回 4 回 5 回 × △ △ OOX ○× X X XO Ox × × OD OOOODD × × △ △ △ AAA〇〇〇 (2) 余事象の確率。 ← 1回目から続けて出る。 ← 2回目から続けて出る。 3回目から続けて出る。 4回目から続けて出る ○○○○は1回目か 続けて出る場合に含 まれる。 PRACTICE 46° (1) 1枚のコインを8回投げるとき, 表が5回以上続けて出る確率を求めよ。 (2) 1回の試行で事象Aの起こる確率をとする。 この試行を独立に10回行ったと き,Aが続けて8回以上起こる確率を求めよ。

解決済み 回答数: 1
数学 高校生

(2)の場合分けの「2」の時(1,1,2)…の組み合わせは3通りなんですか?一回目と2回目と3回目の確率は同じだから1通りだと考えませんか?

基本 例題 41 余事象の確率の利用 00000 (1)15個の電球の中に3個の不良品が入っている。 この中から同時に3個の 電球を取り出すとき,少なくとも1個の不良品が含まれる確率を求めよ。 (2) さいころを3回投げて、出た目の数全部の和をXとする。このとき, X>4 となる確率を求めよ。 CHART & SOLUTION 「少なくとも~である」, 「〜でない」には余事象の確率 p.61 基本事項 5| ① (1) 「少なくとも1個の不良品が含まれる」の余事象は「3個とも不良品でない」である。 (2) 「X>4」の場合の数は求めにくい。 そこで、余事象を考える。 「X>4」の余事象は 「X≦4」であり,Xはさいころの出た目の和であるから, X=3, 4 の場合の数を考える。 解答 (1) 15個の電球から3個を取り出す方法は P(A)= 15C3通り A: 「少なくとも1個の不良品が含まれる」 とすると,余事 象Aは 「3個とも不良品でない」 であるから, その確率は 12C3 44 15C3 91 よって, 求める確率は P(A)=1-P(A)=1- 91 91 44_47 (2) A: 「X>4」 とすると, 余事象Aは 「X≦4」 である。 [1] X = 3 となる目の出方は (111) の [2] X=4 となる目の出方は 目の出方は全部で6通りあるから,[1], [2] より 12-11-10 3.2.1 15-14-13 321 ←余事象の確率。 ← 「X>4」 の余事象を 「X<4」 と間違えないよ うに注意。 (1,1,2) (1,2, 1), 2, 1, 1) の 3通り モ 事象 [1] [2] は排反。 1 4_1 3 + = P(A)=- 63 63 63 54 よって, 求める確率は P(A)=1-P(A)=1- 54 54 153 年の人! ・余事象の確率。

解決済み 回答数: 1
数学 高校生

確率の問題なのですが(0.0)から(0.3)までの範囲に絞っているのは何故ですか?教えて頂きたいです。

375 太郎君は3円, 花子さんは 10円を持っている. いま, 太郎君と 花子さんが次のようなゲームをする. え、太郎君が負けたならば花子さんに1円を支払う. (ただし, 太郎 じゃんけんをし,太郎君が勝ったならば花子さんから1円をもら くんがじゃんけんに勝つ確率は1/2とし,あいこはないものとする 太郎君の所持金がちょうど0円となるか, あるいは5円となった ときにこのゲームを終わることにする. 6回目のじゃんけんで太郎君 の所持金が3円になる確率を求めよ. 〔慶應大の一部 文字でおいてみる。 《解答》 太郎君が回勝ち、1回負けると, 所持金は 3+x-y円である. これが0円より多く5円より少な いのは間 0 < 3 + x-y < 5 BIC A 10 ⇔ x-2<y < x +3 この領域の格子点を (0, 0) から (33) まで進む最短経路数 が,太郎君の勝ち負けのパターン数であ 数であ VA y=x+3 る。 そこで右上図において, 点0から点 Aまで経路数がα 通り, 点0から点Bま での経路数が6通り存在するなら,点0 3 8 13 から点Cまでの経路数はa+b通りであ 1 3 5 5 る。この作業を繰り返して, 右の実線部の 格子を進む最短経路数は13通り よって求める確率は 12 2: (E) 13. 13. (1) 2 (1/2)= 13 64円(税込 0) 0 T 1).().(d,s,l) (y =x-2 X 2.余事象の確率を求め,全体の確率1から引くという作業は何度も経験し ているはずです.しかし,本間のように, ある事象の中で適さない事象を除 くというのには慣れていないかも知れません。この練習をしましょう。

解決済み 回答数: 1
数学 高校生

2番についてです。こでら2以上から3以上を引いていますが、 2以下から1が出る確率を引いてもできないんでしょうか?やってみたところうまくいきませんでした、、

一個のさいころ 目の最小値が2以下である確率 目の最小値が2である確率 げるとき、 次の確率を求めよ。 p.313 基本事項 5 CHARTL & THINKING 「以上」「~以下」には 余事象の確率 最小値が2以下となるのはどのような場合があるかを調べてみよう。 2以下の目が1回 2 回 3 回出る場合の確率を考え,それらの和を求めればよいのだが、 実際に計算すると, si×2×4°+C2×2°×4+2。 63 となり, 計算が大変。 問題文は「3回のうち少なくとも1回は2以下の目が出ればよい」 といい換えることが できるから、余事象の確率が利用できそうだと考えるとよい。 (2) 最小値が2となるのはどのようなときだろうか? 出る目がすべて2以上ならよいのだろうか? 右の図のように、出る目がすべて2以上, すなわち最小値が 2以上の場合には、最小値が2でない場合が含まれているこ とがわかる。 3回のうち少なくとも1回は2の目が出なければならない から、余事象の確率が利用できないだろうか? 解答 1個のさいころを繰り返し3回投げるとき, 目の出方は 通り A:「目の最小値が2以下」 とすると,余事象 Āは「目の 「最小値が3以上」であるから, A の起こる確率は 43 8 P(A)=-(+) = 7 P(A)=1-P(A)=1- 8 19 よって、求める確率は 0 27 27 (2)目の最小値が2以上である確率は 5³ 125 63 216 よって, (1) から、求める確率は A 125 8 61 216 27 216 (2) 最小値が 2以上 最小値が 3以上 最小値が2 in 「3個のさいころを 時に投げる」ときの確率 考えても同じこと。 3以上の目は,3,4 6の4通り。 3回とも2以上6 目が出る確率。 (最小値が2以上 最小値が3 率)

解決済み 回答数: 1
数学 高校生

複素数平面の問題なのですが、(3)で4P3などで求めているのは何故でしょうか?4C3では駄目な理由を教えて頂きたいです。

軸上に あるから =, 総合 α=sin- π +icos 100 とする。 (1) 複素数αを極形式で表せ。 ただし, 偏角0 の範囲は00<2とする。 (2) 数学C245 2個のさいころを同時に投げて出た目をk, lとするとき = 1 となる確率を求めよ。 複素数である確率を求めよ。 (3)3個のさいころを同時に投げて出た目を k l m とするとき, ah, a, a” が異なる3つの 2 π πで、 10 5 5 2 01/03x<2であるから ※極形式は T π 2 - 2 5 [山口] →本冊 数学C例題107 108 Cosshの←一般に、OBA F = sin(x)+icos (12/31) =conf/x+isin/3d 2 TC とき sinβ+icos β の = cos(-8)+isin(-8) (2) kl は整数であるから 2 kl 5 -(cosx+isinx)=cos 2+isin 24 =COS 2kl 5 2kl 5 よって,=1となるのは, nを整数として 2kl ←ド・モアブルの定理。 ここで, 2個のさいころの目の出方の総数は されるとき,つまりkl=5nから, klが5の倍数のときである。 5 π=2nと表 ←1=cos2n+isin2na ( n は整数) 62通り が5の倍数にならないのは、ん、1がともに5の倍数でないと余事象の確率を利用す きであり,その目の出方は 52 通り したがって、求める確率は 52 11 1- = 62 36 (3)3個のさいころの目の出方の総数は 2 -л+isin- acos 3 12 s 5 なんで6かけている?lis る。 k, lのとりうる値は, どちらも1,2,3,4,5, 6のうちいずれか。 この 6つの目のうち,5の倍 数は5のみ。 総合 2 π =COS 137) = cos 27+isin 127 ・π =COS 5 nisin 2 =a 5 また, arga= -πであり, argum= 25 ( は整数)から y 1 a=a a² 8 arga²=л, arga³=л, arga= -π, argo=2π -1 /x 0 a³ a 6 5 0<arga=arga<arga²<arga³<arga¹<arga³=2 ゆえに,α'(=α),2,3,α^,α はすべて異なる値である。 よって,ak, a', am が異なる3つの複素数となるのは,k, L, mがすべて異なり,かつ1と6を同時に含まない場合である。 それは次の [1][2] の場合に分けられる。 [1]1も6も含まれない場合 (*) (7. 1. 2) klmは2, 3, 4, 5 のいずれかの値をとるから、この場合1または6が, の数は 4P3=4・3・2=24(通り) [2]k,l,mに 1 6 のいずれか一方が含まれる場合 k l m のいずれか1つが1または6の値をとり 残りの2 つは2,3,4,5のいずれかの値をとるから,この場合の数は 3・2・4P2(*)=3・2・12=72(通り) かくりつ 復習 Chじゃない?? のどこにくるかで Ct 通 り 1または6のどちら かで2通り、残りの2か 所に 2, 3, 4, 5から2つ を選んで並べるからPz 通り。

未解決 回答数: 1
数学 高校生

この問題の2番について、解答とは違うやり方で解いたところ、合っていませんでした。この解き方(写真2枚目)のどこが間違いなんでしょうか??

例題 42 さいころの出る目の最小値 一個のさいころを繰り返し3回投げるとき、次の確率を求めよ。 目の最小値が2以下である確率 目の最小値が2である確率 2004 1個のさいころを繰り返し 3回投げるとき、目の出方は 6通り (1) A: 「目の最小値が2以下」とすると, 余事象Aは「目の CHART & THINKING 「~以上」、「~以下」には 余事象の確率 (1) 最小値が2以下となるのはどのような場合があるかを調べてみよう。 2以下の目が1回 2回 3回出る場合の確率を考え、それらの和を求めればよいのだが, j×2×4°+sC2×23×4+2 実際に計算すると、 6 3 となり、計算が大変。 問題文は「3回のうち少なくとも1回は2以下の目が出ればよい」といい換えることが できるから、余事象の確率が利用できそうだと考えるとよい。 (2) 最小値が2となるのはどのようなときだろうか? 出る目がすべて2以上ならよいのだろうか? 右の図のように、出る目がすべて2以上, すなわち最小値が 以上の場合には、最小値が2でない場合が含まれている とがわかる。 3回のうち少なくとも1回は2の目が出なければならない。 から、余事象の確率が利用できないだろうか? 「最小値が3以上」であるから, Aの起こる確率は 43 4 8 P(A) = -(1) - 2 6³ 6 27 よって求める確率は P(A)=1-P(A)=1- 8 19 27 27 (2) 目の最小値が2以上である確率は よって,(1) から 求める確率は 125 8 61 216 27 216 PRACTICE 42 8 3 53 125 6³ 216 00000 (2) p.313 基本事項 5 最小値が 2以上 最小値が 3以上 最小値が2 if 「3個のさいころを同 「時に投げる」ときの確率と 考えても同じこと。 3以上の目は,3,4,5, 6の4通り。 ←3回とも2以上 6以下の 目が出る確率。 ◆ (最小値が2以上の確率) - (最小値が3以上の確 2章 4 「事象と確率 確率の基本性質

解決済み 回答数: 1