学年

教科

質問の種類

数学 高校生

(3)の問題です。解説をみたのですが、黄色の線を引いたところです! この4はどこから出できたのでしょうか?教えて欲しいです🙇‍♀️

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが1 個ある。 玉には,中心を通って穴が開いているとする。 (1)これらを1列に並べる方法は何通りあるか。合 (2)これらを円形に並べる方法は何通りあるか。 (3) これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18, 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3)「首輪を作る」とあるから,直ちに じゅず順列=円順列 2 でよいだろうか? すべて異なるもの なら、じゅず順列で解決するが,ここで は,同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 答 000 左右対称 裏返すと同じ人 0 OL 9! 9.8.7 -=252 (通り) 同じものを含む順列。 6!2! 2.1 (1) 1列に並べる方法は (2)透明な玉1個を固定して、残り8個を並べると考えて 8! 8・7 -=28(通り) 6!2! 2.1 (3)(2)の28通りのうち,図 [1] のように 4通り [1] 左右対称になるものは よって,図[2]のように左右対称でない 円順列は 19文の [2] 赤玉6個、黒玉2個を1 列に並べる場合の数。 inf. (2) について, 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 307 1章 3 組合せ 28-424 (通り) この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 4+ =16(通り) 2 PRACTICE 330 する これらを1列に並べる方法は の下にひもを通し、

解決済み 回答数: 1
数学 高校生

数学Ⅱの不等式の証明で画像の(2)についての質問です。別解の解法の、左辺が負の時の場合分け[1]では、不等式は成り立つとありますが、この[1]の場合分けでは与式の|a|-|b|<=|a-b|の=は成り立っているのですか?

基本 例題 29 不等式の証明 (絶対値と不等式) 00000 次の不等式を証明せよ。 (1)|a+6|≦|a|+|6| (2)|a|-|6|≦|a-bl p.42 基本事項 4. 基本 28 CHART & THINKING 似た問題 1 結果を使う ② 方法をまねる (1)絶対値を含むので、このままでは差をとって考えにくい。 |A=A2 を利用すると,絶 対値の処理が容易になる。 よって、 平方の差を作ればよい。 (2)証明したい不等式の左辺は負の場合もあるから, 平方の差を作る方針は手間がかかり そうである (別解 参照)。 そこで, 不等式を変形すると |a|≧|a-6|+|01 ← (1) と似た形になることに着目。 ①の方針で考えられそうだが, どのように文字をおき換えると (1) を利用できるだろうか? 解 牛 (1)(|a|+|6|2-|a+b=(a+2|a||6|+16)-(a+b)2 よって =q2+2|46|+62-(a2+2ab+62 ) =2(labl-ab)≧0 (*) la+b≦(|a|+|6|)2 |a+6|≧0,|a|+|6|≧0 であるから |a+6|≦|a|+|6| 別解 -lal≦a≦|al, -66|6| であるから 辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| |a|+|6|≧0 であるから la+6|≦|a|+|6| (2)(1)の不等式の文字αを a-b におき換えて | (a-b)+6≦la-6|+|6| よって|a|≦la-6|+|6| ゆえに |a|-|6|≦la-6| 別解 [1] |a|-|6|<0 すなわち |a|< |6| のとき (左辺) < 0, (右辺) > 0 であるから不等式は成り立つ。 [2] |a|-|6|≧0 すなわち |a|≧|b のとき la-6-(|a|-161)=(ab)2-(α-2|ab|+62 ) よって =2(-ab+lab)≥0 (|a|-161)2≦la-612 |a|-|6|≦|a-6| |4|-161≧0,10-6≧0 であるから int A≧0 のとき -|A|≦A=|A| A<0 のとき -|A|=A<|A| であるから,一般に -|A|SA≦|A| 更にこれから |A|-A≧0, |A|+A≧0 c0 のとき cxcxlsc x-c, c≤x ⇒xc ②の方針。 α|-|6|が負 の場合も考えられるの で, 平方の差を作るには 場合分けが必要。 [in 等号成立条件 (1) は (*) から, lab=ab, すなわち, ab≧0 のとき。 よって, (2) は (6) ゆえに (a-b≧0 かつ60) または Cabs0 かつ 0

解決済み 回答数: 1
数学 高校生

数2の問題です。(2)の直線となる時はなぜr=-1となるのか教えてください🙇‍♀️🙏

解 追加 マートフォ 解説動画を 加費用なし ※解説動画は, の2次元コー 154 基本例題 94 2つの円の交点を通る円・直線 2つの円x2+y2=5 ...... ①, (x-1)+(y-2)²=4 (1)2つの円は,異なる2点で交わることを示せ。 (2)2つの円の交点を通る直線の方程式を求めよ。 ...... 000 ②について (3)2つの円の交点と点 (0, 3) を通る円の中心と半径を求めよ。 CHART & THINKING 1 方針・方 (1) 2つの円の半径と中心間の距離の関係を調べる。 重 ( に 基本77, p. 139 基本 a 放 共 (2),(3)2つの円の交点の座標を求めることは面倒。 そこで,次に示すか 129 基本 の考え方を応用してみよう。 2曲線 f(x, y) = 0, g(x,y)=0の交点を通る曲線 方程式 kf(x,y)+g(x,y)=0(kは定数) を考える →①,②を=0の形にして,k(x2+y2-5)+(x-1)+(y-2)2-4=0 ・③ とすると,③は2つの円の交点を通る図形を表す。 数学Ⅱ. 数学 トル)の解説 順次配信いた 黄チャー ■教科書 必須問 適度な 解答 れます。 学習内容 ■考える 例題の CHART CHART 2タイフ 考える 5 どこで (2)③が直線を表すときは? (3) ③が点 (0, 3) を通るときのkは? (1)円 ①,②の半径は順に√5,2である。 (-5' 3), 600 (SS)+"{(--= 2つの円の中心 (0,0),(1,2) 間の距離をdとする d=√12+22=√5から #l√5-21<d<√5 +2 よって,2円 ①,②は異なる2点で交わる。 (2)k(x2+y^-5)+(x-1)+(y-22-40 (kは定数)・ ...... ・③ Ir-rkdr inf. ③は円 0 ことはできない。 とすると③は2つの円① ② の交点を通る図形を表す。 これが直線となるのはk=-1のときであるから,③に③xy k=-1 を代入すると (x2+y2-5) +(x-1)²+(y-2)²-4=0 整理すると x+2y-3=0 なるように (2) ② 半径2 定める。 (3) したの 0 4( これなきる [ (1) 1 よ [1 inf (2) の直線 ①の円の方 [2] 2 立させて解くと x k=-1 円の交点、すな ①と②の められる。 = 29 9 エスビ 書をタブレ いつでも、 デジタルな (3)③が点 (0, 3) を通るとして ③に x=0,y=3 を代入して整理 すると4k-2=0 よってk=1/2 ① 半径5 C(0²+32-5) これを③に代入して整理すると(x-3)+(x-1) - 20 よって 3' 中心 ( 134 ) 半径29 3 [1]. (2)方 物綢 点を よっ PRAC PRACTICE 94 2つの円x2+y^=10, x2 +y²-2x+6y+ 2つの交点と原点を通る円の中心と半径を の2つの交点の座標を求めより よ。 放物線 るrの

解決済み 回答数: 1
数学 高校生

高一数学です。(4)と(5)がわかりません。 4は頂点のy座標が正であるからの後に出てきたマイナス4a分のb2乗-4acは一体なんですか?? その後の(1)よりの説明もよくわかりません。 5はa-b+cはなぜx=-1のときの値だとわかるんですか?

りするとき すいミスをい にしておき 1/2 {}中の 基本 例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 (1) a (2) b (4)62-4ac (5) a-b+c (3)c 00000 A AR x MOITUJO TRE p.91 基本事項 4 基本 51 97 CHART & THINKING グラフから情報を読み取る ミス 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 「軸との交点の位置」 などに着目して, 式の値の符号を調べよう。 上に凸か, yA 下に凸か? 頂点の座標は? x=-1 における 3章 10 y 座標は? 7 x 軸との交点の 位置は? |軸の 位置は? 関数とグラフ ax² + bx + c = a(x+2)² - b²-Aac b 62-4ac 4a よって, 放物線y=ax2+bx+c の軸は 直線 x=-- 62-4ac 頂点のy座標は 4a る。 b ←ax2+bx+c =alx'+ = a(x²+x)+c 2a' b y軸との交点のy座標はcであ 400 =a 2a {(x+2)-(2)+c b 2a 3(x+2)-a (20)²+c b 62 また, x=-1 のとき y=a(-1)2+6(-1)+c=a-b+c -a(x+2)- 2a 62-4ac (1) グラフは上に凸の放物線であるから a<0 4a b 平 b (2) 軸が x<0 の部分にあるから <0す。 ↓ 2a ->0 2a (1)より, a<0 であるから b<0 (3) グラフがy軸の負の部分と交わるから c<0 62-4ac (4) 頂点のy座標が正であるから ->0 4a (1)より, a < 0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は, x=-1 におけるyの値である。 y>0 ←放物線 y=ax2+bx+c について, x軸と異なる2点で交 わる⇔ b2-4ac > 0 が成り立つ (p.139 以降 を参照)。 グラフから,x=-1 のとき すなわち a-b+c>0 PRACTICE 52Ⓡ 右の図のような2次関数y=ax2+bx+c のグラフについて, 次の値の正.0.負を判定せよ。 (1) a (4)62-4ac (2) b (3)c (5) a+b+c (6) a-b+c 0 1 x

解決済み 回答数: 1
数学 高校生

この写真の問題の(2)がわかりません。 Q5(X−1)<2(2X+a)を満たすXのうちで、最大の整数が6であるとき、定数aの値の範囲を求めよ。 写真に答えも載っていて、6<2a+5≦7なのですが、なぜ≦7がつくのかわかりません。 ついでに1<2a≦2の解き方も教えて欲し... 続きを読む

60 基本 例題 33 1次不等式の整数解た不 00000 (1) 不等式 6x+8(6-x)>7 を満たす2桁の自然数xの個数を求めよ。 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ あるとき、 定数αの値の範囲を求めよ。 基本 29.32 CHART & THINKING 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 2 (1)2桁の自然数 → x≧10 これと不等式の解を合わせて、条件を満たす整数xの値の 範囲を 10≦x≦n の形に表す。 この不等式を満たす整数の個数は? (2) 不等式の解は x<A の形となる。 数直線上でAの値を変化させ,x<Aを満たす最大 の整数が6となるのはAがどのような値の範囲にあるかを 考えよう。 → x=6 は x<A を満たすが, x=7は x<A を満たさないことが条件となる。 解答 (1) 6x+8(6-x) >7から ゆえに x<41=20.5 xは2桁の自然数であるから 10≦x≦20 求める自然数の個数は すべて -2x-41 2 展開して整理。 不等号の向きが変わる。 解の吟味 21 ++ 10 11 20 x 20-10+1=11 (個) (2)5(x-1)<2(2x+α) から x<2a+5 ・① ①を満たすxのうちで最大の整数が6となるのは 6<2a-+5≤7 のときである。 ゆえに 1<2a≤2 よって CAS やます。 展開して整理。 eas As Jak 6 2a+5 7 ①を満たす最大の整数 JJRY 6<2a+5 <7 とか 62a+57 などとし ないように。 等号の有 無に注意する。 ← α=1のとき,不等式は <7で、条件を満たす。 a = 1/12 のとき,不等式は x<6で、条件を満たさ ない。

解決済み 回答数: 1
数学 高校生

青い下線部の座標はどうしてこのようになるのでしょうか?? 座標の表し方とその後の照明の運び方がわかりません。 どなたか分かる方教えてください!!‍🙇‍♀️

116 基本 例題 67 座標を利用した証明 (1) 00 △ABCの重心をGとするとき, AB' + BC2+CA²=3(GA2+GB2+GC) 成り立つことを証明せよ。 CHART & THINKING 座標を利用した証明 座標を利用すると、図形の性質が簡単に証明できる 場合がある。 そのとき, 座標軸をどこにとるか, 与 えられた図形を座標を用いてどう表すかがポイン トとなる。 そこで、あとの計算がスムーズになるよ うに, 座標軸を定める 10 を多く ② 変数を少なく 1 問題に出てくる点がなるべく多く座標軸上に くるように— 0 が多くなるようにとる。 y p.112 基本事項 3. A(x1, y₁) (x + x + x + C(x3, 93) 3 B(x2,y2) COSTA x O 辺BCをx軸上に y A(x1, y₁) A x 3 OB(x2,0) C(x3,0)HA 日 もっとよい方法は? 2 2つの頂点を原点に関して対称にとる 変数の文字を少なくする。 これらをもとに,点 A, B, C の座標を文字でどう表すかを考えよう。 解答 直線BC をx軸に,辺BCの垂直 BC-(-1-4)+(S-1)=Se (8-1)+((-)-1)-2 二等分線をy軸にとると、線分A(a,b) BCの中点は原点0になる。 10を多 ② 変数を少なく A (a,b) とすると、 a b c(1.12/3)となり 33 A(3a, 36), B(-c, 0), C(c, 0) とすると, Gは重心であるから,(0 G(a, b) と表すことができる。 2 (G(a,b) -0) B # (-c, 0) (c,0) x 少し煩雑 このとき +1)(8-6)+ a AB2+BC2+ CA2 1-88-D ={(-c-3a)+(-3b)2}+{c-(-c)}+{(3a-c)2+(36)2} ==3(6α²+662+2c2 ...... ① GA2+GB2+GC2 ={(3a-a)2+(36-b)2}+{(-c-a)+(-6)2} =6a2+662+2c2 ****** ② ②から +{(c-a)+(-6)2} AB2+BC2+CA2=3(GA2+GB2+GC?) 両辺を別々に計算 比較する。 注意 更に都合がよ ようにと, A(0,36 とおいてはいけない。 場合,Aはy軸 (辺 垂直二等分線) 上の 定されてしまう。

解決済み 回答数: 1
数学 高校生

1枚目の問題、最後青マーカー引いたところに、「Xの値には言及してないので」a=4はまとめて含んであると書いてあるんですが、 他の問題を見てみると例えば2枚目の(2)のようにXの値は問題で言及されてないと思うんですが、a=3は場合[1]にまとめずに書いてるんですがそこはなぜで... 続きを読む

例話 192 最大 最小 0000 (f(x)=x-10x2+17x+44 とする。 区間 a≦x≦a+3 における f(x) の 最大値を表す関数g(α)を, αの値の範囲によって求めよ。 © CHART & THINKING 最大 最小 グラフ利用 極値と端の値に注目 』の値が変わると 区間 a≦x≦α+3 が動くから, αの値によって場合分けする。 場合分けの境目はどこになるだろうか? 基本 190 y=f(x)のグラフをかき, 幅3の区間 a≦x≦a+3 を左側から移動させながら考えよう。 大値をとるxの値が区間内にあるか、区間の両端の値f(α) f(a+3) のどちらが大 いかに着目すればよい。 f(a)=f(a+3) となるαの値も境目となることに注意。 f(x)=3x²-2x+17=(x-1)(3x-17) f(x) = 0 とすると 17 x=1, 3 増減表から,y=f(x) のグラフは右下のようになる。 [1] a+3 <1 すなわち α < 2 のとき g(a)=f(a+3)=(a+3)3-10(a+3)2+17(a+3)+44 =a3-a²-16a+32 [2] α+31 かつ α <1 すなわち -2≦α <1 のとき (a)=f(1)=52 a1 のとき,f(a)=f(a+3) とすると a3-10a2+17a+44-a3-a²-16a+32 整理すると 9α2-33a-12=0 よって (3a+1)(a-4)=0 17 x 1 3 f'(x) + 0 - 0 + f(x) 極大 52 44 極小 y=f(x)| N 73 17 a≧1 から a=4 [3] 1≦a<4 のとき ( g(a)=f(a)=a-10a2+17a+44 [4] 4≦a のとき g(a)=f(a+3)=a-a²-16a+32 [1] y y=f(x); [2]yy=f(x): [3] y=f(x); [4] ya y=f(x)¦ 52 x 6章 21 関数の値の変化 AR 0. a x a 1a+3×17 x 11 4 7 x a+3 小泉 a a+3 0 a 1 4 a+3 x 7 In a=4 のとき,最大値を異なるxの値でとるが,xの値には言及していないので, 4≦a として [4]に含めた。 RACTICE 1926 と _f(x)=2x3-9x2+12x-2 とする。 区間 a≦x≦a+1 における f(x) の最大値を表 て求めよ。 a (a) て の 90

解決済み 回答数: 1
数学 高校生

(1)、右辺の絶対値の形と左辺の絶対値の形で二乗の仕方が変わるのはなんでですか?なぜ左辺は絶対値外して二乗して良いんですか?🙇‍♂️

基本 例題 29 不等式の証明 (絶対値と不等式) 0000 次の不等式を証明せよ。 (1)|a+6|≦|a|+|6| (2)|a|-|6|≦|a-bl p.42 基本事項 4 基本28 1章 CHART & THINKING 似た問題 1 結果を使う ② 方法をまねる (1) 絶対値を含むので,このままでは差をとって考えにくい。 |A=A' を利用すると, 絶 対値の処理が容易になる。 よって、 平方の差を作ればよい。 (2)証明したい不等式の左辺は負の場合もあるから, 平方の差を作る方針は手間がかかり そうである(別解 参照)。 そこで, 不等式を変形すると |al≦la-61+16 ← (1) と似た形になることに着目。 ①の方針で考えられそうだが,どのように文字をおき換えると (1) を利用できるだろうか? (1) (|a|+|6|2-la+b= (la2+2|a||61+16)-(a+b)2 =a²+2|ab|+b²−(a²+2ab+b²) =2(labl-ab)≥0 ..(*) ...... よって la+b(a+b)² |a+6|≧0,|a|+|6|≧0 であるから 別解 la+6|≦|a|+|6| lalalal -1666 であるから 辺々を加えて -(\al+16)≦a+b≦|a|+|6| la+6|≦|a|+|6| |a|+|6|≧0 であるから in A≧0 のとき |-|A|≦A=|A| AK0 のとき -|A|=A<|A| であるから,一般に -ASASA 更に、これから Al-A≥0, |A|+A≥0 c≧0 のとき -c≤x≤cx≤c 4

解決済み 回答数: 1