数学
高校生
解決済み

(3)の問題です。解説をみたのですが、黄色の線を引いたところです!
この4はどこから出できたのでしょうか?教えて欲しいです🙇‍♀️

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが1 個ある。 玉には,中心を通って穴が開いているとする。 (1)これらを1列に並べる方法は何通りあるか。合 (2)これらを円形に並べる方法は何通りあるか。 (3) これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18, 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3)「首輪を作る」とあるから,直ちに じゅず順列=円順列 2 でよいだろうか? すべて異なるもの なら、じゅず順列で解決するが,ここで は,同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 答 000 左右対称 裏返すと同じ人 0 OL 9! 9.8.7 -=252 (通り) 同じものを含む順列。 6!2! 2.1 (1) 1列に並べる方法は (2)透明な玉1個を固定して、残り8個を並べると考えて 8! 8・7 -=28(通り) 6!2! 2.1 (3)(2)の28通りのうち,図 [1] のように 4通り [1] 左右対称になるものは よって,図[2]のように左右対称でない 円順列は 19文の [2] 赤玉6個、黒玉2個を1 列に並べる場合の数。 inf. (2) について, 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 307 1章 3 組合せ 28-424 (通り) この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 4+ =16(通り) 2 PRACTICE 330 する これらを1列に並べる方法は の下にひもを通し、

回答

✨ ベストアンサー ✨

(3)3行目の4通りの4です

円順列としては28通り
そのうち左右対称の4通りはそのまま、
非対称の24通りは半減したものがじゅず順列です

⭐️

ありがとうございます‼️

この回答にコメントする
疑問は解決しましたか?