学年

教科

質問の種類

数学 高校生

242.2 厳密には RC:AC=1:√3、∠ACR=90°より∠ORA=π/3... ということですよね?? また、記述はこれでも問題をないですか?(写真2枚目)

370 00000 基本例題 242 放物線と円が囲む面積 放物線L:y=xと点尺(0.2/24) を中心とする円Cが異なる2点で接するとき (1) 2つの接点の座標を求めよ。 CASATREON (2) 2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面積S [類 西南学院大]基本 237 を求めよ。 指針▷ (1) 円と放物線が接する条件をp.156 重要例題102 では 接点重解で考えたが, ここでは微分法を利用して,次のように考えてみよう。 LとCが 点Pで接する点Pで接線l を共有するRPl (2)円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを考え するとるとよい。 半径が,中心角が0(ラジアン)の扇形の面積は 12/20 b÷d 解答 (1)y=x2 から y'=2x LとCの接点Pのx座標をt (t=0) とし, この点での共通 の接線をl とすると, lの傾きは 2t √3 2 5 1²- 点と点P(t, t2) を通る直線の傾きは 4t2-5_ RP⊥l から 2t - -=-1 ゆえに t= 4t PROTECC = 4 4t²-5 4t t-0 よって t=± (2) 右図のように, 接点A,Bと点Cを定めると, RC:AC=1:√3 から ∠ORA=- =, RA=2.( Lと直線AB で囲まれた部分の面積をSとすると S=S+ △RBA- (扇形 RBA) ーπー ・12. /3 --√²/(x+√3)(x-√3) dx + √3-5 ゆえに、接点の座標は (2) (-4) y Ly=x) / 3 4 2 =1 π =-(-1) { ¹3³-(-√3)² + √¹3³__3√3_7B_S 4 3 O y B R fp 0 0 A

回答募集中 回答数: 0
数学 高校生

242.1 t≠0と書かないといけない理由はなぜなのでしょうか??

370 基本例題 242 放物線と円が囲む面積 R 5 R(0, 4 |放物線:y=x2 と点 R 0, を中心とする円Cが異なる2点で接するとき (1) 2つの接点の座標を求めよ。 PARA (2) 2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面 SSEROTOPROT を求めよ。 [類 西南学院大]基本20 指針 (1) 円と放物線が接する条件を p.156 重要例題102 では 接点重解で考えた ここでは微分法を利用して,次のように考えてみよう。 +88=8+₁ LとCが点P で接する点P で接線l を共有するRPℓ (2) 円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを利 するとるとよい。 半径が,中心角が0(ラジアン)の扇形の面積は 12/10 - b-d 8+0 (6-8)(6+8)6 解答 (1)y=x2 から y'=2x 株果 2 LとCの接点Pのx座標をt (t≠0) とし, この点での共通 の接線を l とすると, lの傾きは 2t 5 t²_. 点 R と点 P(t, t2) を通る直線の傾きは4412-5⑩- 380 < $100 t-0 4t ゆえに = 3(-x) (0) RP⊥l から 4t²-5 4t 2t. √√3 t=± よって b/(0-8) (2) 右図のように,接点A,Bと点Cを定めると, = =-1 2 ゆえに、接点の座標は 2 練習 3242 5 3 RC:AC=1:13 から ∠ORA=1/5, RA=22-2)=1 4 L と直線 AB で囲まれた部分の面積をSとすると一 S=S+RBA- ( 扇形RBA) -S²(³-x²) dx + 1 · 1²³.sin ²23 x - 1.rze 3 4 2 RA=2• 放物線:y=1/12 x 2 上に √√3 4 4 --√²(x + √3)(x-√3) dx + √3_32-533 == 2 2 π 3 24 -3√3 4 √√3 3√3 3 -8) +/-(6- 8)-(-B SIA T ------- A 3+ B 3- O B A 1 R f [6] 2 [0] √√3 y (y=r /102/01

未解決 回答数: 1
数学 高校生

一つ目、X度と2Θは同じではないんですか? 2つ目は、2枚目の図の直線の半分の長さで求めれないんですか?

262 重要 例題 170 曲面上の最短距離 1とする。 右の図の直円錐で、Hは円の中心, 線分ABは直径, OH は円に垂直で, OA=a, sinO 3 点Pが母線 OB 上にあり, PB= " とするとき, 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 指針 直円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。そこで、曲面を げる。つまり 展開図で考える。 → 側面の展開図は扇形となる。 なお, 平面上の2点間を結ぶ最短の経路は, 2点を結ぶ線分である。 解答 AB=2r とすると, △OAH で, AH=r, ∠OHA = 90°, 1 sine であるから 3 a 3 側面を直線OA で切り開いた展開図 は、図のような, 中心 0, 半径 OA=αの扇形である。 中心角をxとすると、 図の弧 ABA' の長さについて 2ra 360° = 2πr 104=1/3であるから a A ad 3 B =a+²+ ( a )² - 2ª + ² a ² — — — ² *+ 2a 2 17 = 3 2 9 AP>0であるから 求める最短経路の長さは IP X 0 -=120° √7 B a A' Y x=360°・ =360° a ここで求める最短経路の長さは、 図の線分 AP の長さである 2点 S, T を結ぶ最短の経 から、△OAP において, 余弦定理により, は、2点を結ぶ線分ST AP = OA²+OP2-20A ・OP cos 60° 1辺の長さがαの正四面体OABCにおいて 辺AB, 170 BC, OC 上にそれぞれ点P, Q, R をとる。 頂点Oから P,Q,Rの順に3点を通り,頂点 長さを求めよ。 0000 A (A) A S B 弧ABA' の長さは, 底面の 円 H の円周に等しい。 EXER 114 半径20 AB: B の面積 する。 115 AABO である 116 AAB- が成り (1) S ③ 117 次の (1) (2) (3) (4) ③ 118 1匹 3 C (1) (4) 119 41 し (1) (2 HINT

未解決 回答数: 1