数学
高校生

242.1
t≠0と書かないといけない理由はなぜなのでしょうか??

370 基本例題 242 放物線と円が囲む面積 R 5 R(0, 4 |放物線:y=x2 と点 R 0, を中心とする円Cが異なる2点で接するとき (1) 2つの接点の座標を求めよ。 PARA (2) 2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面 SSEROTOPROT を求めよ。 [類 西南学院大]基本20 指針 (1) 円と放物線が接する条件を p.156 重要例題102 では 接点重解で考えた ここでは微分法を利用して,次のように考えてみよう。 +88=8+₁ LとCが点P で接する点P で接線l を共有するRPℓ (2) 円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを利 するとるとよい。 半径が,中心角が0(ラジアン)の扇形の面積は 12/10 - b-d 8+0 (6-8)(6+8)6 解答 (1)y=x2 から y'=2x 株果 2 LとCの接点Pのx座標をt (t≠0) とし, この点での共通 の接線を l とすると, lの傾きは 2t 5 t²_. 点 R と点 P(t, t2) を通る直線の傾きは4412-5⑩- 380 < $100 t-0 4t ゆえに = 3(-x) (0) RP⊥l から 4t²-5 4t 2t. √√3 t=± よって b/(0-8) (2) 右図のように,接点A,Bと点Cを定めると, = =-1 2 ゆえに、接点の座標は 2 練習 3242 5 3 RC:AC=1:13 から ∠ORA=1/5, RA=22-2)=1 4 L と直線 AB で囲まれた部分の面積をSとすると一 S=S+RBA- ( 扇形RBA) -S²(³-x²) dx + 1 · 1²³.sin ²23 x - 1.rze 3 4 2 RA=2• 放物線:y=1/12 x 2 上に √√3 4 4 --√²(x + √3)(x-√3) dx + √3_32-533 == 2 2 π 3 24 -3√3 4 √√3 3√3 3 -8) +/-(6- 8)-(-B SIA T ------- A 3+ B 3- O B A 1 R f [6] 2 [0] √√3 y (y=r /102/01

回答

疑問は解決しましたか?