学年

教科

質問の種類

数学 高校生

この写真の問題の(2)がわかりません。 Q5(X−1)<2(2X+a)を満たすXのうちで、最大の整数が6であるとき、定数aの値の範囲を求めよ。 写真に答えも載っていて、6<2a+5≦7なのですが、なぜ≦7がつくのかわかりません。 ついでに1<2a≦2の解き方も教えて欲し... 続きを読む

60 基本 例題 33 1次不等式の整数解た不 00000 (1) 不等式 6x+8(6-x)>7 を満たす2桁の自然数xの個数を求めよ。 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ あるとき、 定数αの値の範囲を求めよ。 基本 29.32 CHART & THINKING 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 2 (1)2桁の自然数 → x≧10 これと不等式の解を合わせて、条件を満たす整数xの値の 範囲を 10≦x≦n の形に表す。 この不等式を満たす整数の個数は? (2) 不等式の解は x<A の形となる。 数直線上でAの値を変化させ,x<Aを満たす最大 の整数が6となるのはAがどのような値の範囲にあるかを 考えよう。 → x=6 は x<A を満たすが, x=7は x<A を満たさないことが条件となる。 解答 (1) 6x+8(6-x) >7から ゆえに x<41=20.5 xは2桁の自然数であるから 10≦x≦20 求める自然数の個数は すべて -2x-41 2 展開して整理。 不等号の向きが変わる。 解の吟味 21 ++ 10 11 20 x 20-10+1=11 (個) (2)5(x-1)<2(2x+α) から x<2a+5 ・① ①を満たすxのうちで最大の整数が6となるのは 6<2a-+5≤7 のときである。 ゆえに 1<2a≤2 よって CAS やます。 展開して整理。 eas As Jak 6 2a+5 7 ①を満たす最大の整数 JJRY 6<2a+5 <7 とか 62a+57 などとし ないように。 等号の有 無に注意する。 ← α=1のとき,不等式は <7で、条件を満たす。 a = 1/12 のとき,不等式は x<6で、条件を満たさ ない。

解決済み 回答数: 1
数学 高校生

Pnが近づく点を求めたいのにXnの極限を求めているのがなぜだかわかりません。解説お願いします。

重要 例題 24 図形に関する漸化式と極限 R1 図のような1辺の長さαの正三角形ABCにおいて, 頂点 CA Aから辺BCに下ろした垂線の足を とする。 P, から辺 ABに下ろした垂線の足を Q1, Q1 から辺CAへの垂線の 足を R1, R1 から辺BCへの垂線の足をP2 とする。 このよ うな操作を繰り返すと, 辺BC上に点P1, P2, ......, Pn, h が定まる。このとき, Pn が近づいていく点を求めよ。 MOITLE B P1 P2 C 2章 基本 19. 数学 B 基本 36 3 CHART & SOLUTION 図形と極限 番目と (n+1) 番目の関係を調べて漸化式を作る ) BP=xm として, BP1 (すなわち X+1) を X で表す。 直角三角形の辺の比を利用して進 める。 3D 数列の極限 解答 である。 BP=xn とする。 すべての BQn=BP =1/2BP=1/2x ARn= AR,1/12AQ=1/2(4-1/2) CRn=CA-ARn=a- 1a -Xn 1 a -Xn, CPCR.-(+)-+ = = 2 2 = 4 8 3 BP+1=BC-CP+1-a-(+ 1/1 x n ) = 1 / a − 1/1 x n n+ -a 4 8 - x n X T F xn 0-2 A xn a 1 xnl + 2 4 xn] [2] [1xuiQm 2:0 B Xn JR P/P+1 a-(a) xn-ti 4 そのままでもOK. 1 13 2 2 ゆえに Xn+1= xn+ 変形すると Xn+1 =- 8 04 a Xn 3 よって、数列{ x /12/24}は初項 x 1/34, 2 -BR== a 3a a, a= 2 公比 E-1の等比数列であり Xn 8 3 n-1 ga 8 1/4+24 の解は α = 1/24 xn-a=(-1) ( x − a) xn- 3 = 2 n-1/ ゆえに xn= (12/12)(3)+3/31 よって - -a+ X1 n→∞ = ga したがって, Pnが近づいていく点は辺BC を2:1に内分する点である。 -a ma limx=2大 mil (S) 子点と

解決済み 回答数: 1
数学 高校生

32の(2)において、なぜ解に=がつかないのかがわかりません。教えて欲しいです(>人<;)

Job ← は整数であるから 330≤a≤349 -2) ③④の共通範囲を求めて -3≤x<- - 5/3 -3 colen EX x>3a+1 連立不等式 $32 (2x-1>6(x-2) (1) 解が存在しない。 の解について、次の条件を満たす定数αの値の範囲を求めよ。 (2)解に2が含まれる。 (3)解に含まれる整数が3つだけとなる。 x>3a+1 2x-1>6(x-2) から よって x< ① とする。 2x-1>6x-12 (2) ←移項してax≦bの形 整理する 8S ←分母を払う。 れるか (1)①,②を同時に満たすx が存在しないための条件は (1). x [神戸学院大 ] AE [数と式] 11 ≤3a+1 ←不等号の向きが変わる。 ゆえに 11≦12a+4 よって a≥ 12 ←係数を整数に直す。 ←括弧をはずして整理す る。 ←係数を整数に直す。 (1) ←不等号の向きが変わる。 (2)x=2は②に含まれるから, x=2が①の解に含まれること (2) が条件である。 ゆえに 3a+1<2 よってa<内 1 3 11 3a+1 x 4 JJR 3a+1 2 11 x (3)①,②を同時に満たす整数が存在するから、 ①と②に共通 4 範囲があって 3a+1<x<11 4 08 これを満たす整数xが3つだけとなるとき, 11 -=2.75である。 [(2) 倉敷芸科大] から、その整数xは 4 x=0, 1,2 (3) (S) よって ① -1≦3a+1 < 0 ゆえに 11-2≤3a<-1 3 20 12 11 x 2 1 4 ≤a< 3a+1 3 3 +08-aa EX Y33 33 a,bは定数とする。不等式 ax>3x-b を解け。

解決済み 回答数: 1