学年

教科

質問の種類

数学 高校生

数Bの推定です 大門321と322では、 2×1.96×6.2/√n......と1.96×15/√n となっていますが、最初に「2」が付いている時と付いていない時の差が分かりません なぜ322には2をかけないのか教えてくださいm(_ _)m お願いします。

統計的な推 1分間 71, あった。 信頼度 95 ント① ある 調べ 信頼 ② ある そ 3 #1 が KE -サクシード数学B を抽出するから,標本平均Xは近似的に正規分 すなわち N (200, 52 に従う。 布N (200, 1021 264 ゆえに, Z= 5 標準正規分布 N (0, 1) に従う。 したがって、求める確率は P (X > 210)=P(Z>2) 318 標本平均は X = 54, 母標準偏差は = 16, 標本の大きさはn=100である。 よって 求める信頼区間は 54-1.96.. 16 ✓100 したがって [50.9, 57.1] したがって X-200 とおくと,乙は近似的に 319 標本平均は X = 56.3, 標本標準偏差は S=10.2, 標本の大きさはn=100 である。 よって、求める信頼区間は,母標準偏差の代 わりにSを用いると 518 56.3-1.96・ 1.96 =0.5-P(0≤Z≤2) =0.5-p(2) =0.5-0.4772 =0.0228 N n O.COM 54 +1.96. 2x12.152 ただし, 単位は点 10.2 √100 [54.3, 58.3] 320 標本の不良品の率をRとする。 32 R= =0.04, n=800 であるから 800 「R(1-R) n 0-STT/ 0.0148- よって, 製品全体の不良品の率に対する信頼 度 95% の信頼区間は [0.04-0.014, 0.04+0.014] XZ VIE すなわち [0.026, 0.054] XIAOMI 12T PRO 321 95% のときの信頼区間の幅は 2×1.96.. 16 ✓100 =1.96 56.3 + 1.96 ・・ ※2 とすると *** 10.2 √100 人以上調査すればよいとすると, 信頼度 6.2 √n I'S 1 0.04 × 0.96 800 2x12.152 √≥12.152 n ≧ 147.6...... 両辺を2乗して したがって, 148人以上調査すればよい。 322 2枚の答案を抜き出すとき, その平均点を とすると,答案全部の平均点に対する 信頼度 95% の信頼区間は [X-1.96-15 X+1.96.. すなわち 9 よって, 誤差は最大で1.96. |X-m|≦1.96. 15 √n 15 √n 台別 15 1.96 - -2 とすると √n 14.7 √n 1.96 15 両辺を2乗すると n≧216.09 したがって,誤差2点以内で推定するには,217 枚以上抜き出さなければならない。 15 1.96-- - ≧1 とすると √n 29.4 ✓n である。 JE SIE 両辺を2乗すると n≥864.36 したがって,誤差1点以内で推定するには,865 枚以上抜き出さなければならない。 323 政策支持者の標本比率をRとする。 216 R= =0.54,n=400 であるから 400 R(1-R) n =1.96 0.54 × 0.46 400 +0.049 よって、政策支持者の母比率に対する信頼度 95% の信頼区間は 0.54-0.049≤p≤0.54+0.04941 ゆえに 0.491≤ ≤0.589 有権者1万人に含まれる政策支持者の人数は 10000であり,① の各辺を10000 倍すると 4910≤10000p5890 したがって, 4910 人以上 5890 人以下ぐらいいる。 324 表が出る確率を とする。 表と裏の出方に偏りがあるならば, 0.5であ る。 ここで, 「表と裏の出方に偏りがない」,すなわ ちp=0.5 という仮説を立てる。 仮説が正しいとするとき, 900回のうち表が出る 回数 Xは,二項分布 B (900, 0.5)に従う。 Xの期待値 m と標準偏差のは

解決済み 回答数: 1
数学 高校生

この問題の(3)番の問題がよく分かりません なぜ4m+n=3m+(m+n)になるのでしょうか

□」と 4 基礎問 44 第2章 集合と論理 25 必要条件 十分条件 ・ 当であるものを入れよ.ただし,必要十分条件のときは 「必要十 次に,必要条件, 十分条件、必要十分条件のうち,最も適 分条件」 と答えよ. (1) x=-2は²=4であるためのである. (2) |-1|<2√/3は |p|<1 であるためのである (3) 整数m,nについて,4m+nが3の倍数であることはm+n が3の倍数であるためのである. 精講 (4) A=90°は, △ABCが直角三角形であるための (5) 「ry」 は 「rキ2 またはy=3」であるための のとき、 必要条件,十分条件、必要十分条件の判断方法は2つあります。 Ⅰ. (命題の真偽を利用する方法) (○は真, ×は偽を表す) のときはαであるための必要条件 はQであるための十分条件 のときはαであるための必要十分条件 (このとき 「pとQは同値である」 といいます) である。 IⅡI. (集合の包含関係を利用する方法) 条件か, g の表す集合をそれぞれ である. 解答 (1) ²4 を解くと, x=±2 よって, 右図より、 十分条件 (2) |-1|<2√3 より 1-2√3 <p <1+2√3 |p|<1 より, -1<p<1 下の数直線より, 必要条件 1 (1,2) 1-2√3 -1 1+2√3 P (3) 4m+n=3m+(m+n) において, 3m は3の倍数だから 4m+nが3の倍数ならばm+nも3の倍数で m+nが3の倍数ならば4m+nも3の倍数 よって,必要十分条件 (4) △ABCが直角三角形のとき, 2 ∠A, ∠B, ∠Cのどれか1つが90° だから ∠A=90°△ABC が直角三角形. よって、 十分条件 (5) x=2 かつy=3xy=6 対偶と元の命題は真偽が一致するので ry≠6ェキ2 または yキ3. よって、 十分条件 45 反例はr=1, y=6 命題の真偽 24 B3) (-3-1) (3) ☆かぼなし 第2章 ポイント 必要条件, 十分条件、必要十分条件の判断方法は 命題の真偽を利用 Ⅱ. 集合の包含関係を利用 ++) <2√3 ⒸP < 2√³ APA² 25 P>

解決済み 回答数: 1
数学 高校生

2番の問題です なぜa>-1、a<-1で場合分けしてるのですか?

こするのに で、(1 使用し, る. a¹, 下げ 例題 55 a 解答 2150% Focus ax SEJARLOT 考え方 文字係数を含む方程式を解く問題. 練習 55 *** Focus 文字係数の方程式 次の方程式を解け. x+1=0 (ii) a=0のとき よって, p.68 の例題 29 文字係数の不等式と同様に考える。つまり、見かけ上の最高次の項の 係数が0の場合とそうでない場合を分けて考える。 たとえば,(1)では, x2の係数αに着目すると, a=0のとき, x+1=0 となり, 1次方程式となる. a=0のとき, ax²-(a+1)x+1=0の2次方程式を考える。 のとき もとの方程式は、 -x+1=0 より, ax2+(-a-1)x+1=0 (Q+x+x)= (x-1)(ax-1)=0 より, (2)(a-1)(a+1)x²=α-1 (i) α=1のとき (2) (a²-1)x²=a-1 a=0 のとき, x=1 よって, a=0 のとき, x = 1, (ii)a=-1のとき もとの方程式は、 0.x2=0 このとき, xはすべての実数 x=1. ½-½ (ii) α≠±1 のと 平 α²-10 から、 両辺を²-1で割って, UN MA x²= 1 a+1 a>-1のとき, x = ±₁ a-1 のとき, 解なし a もとの方程式は, 0.x²=-2 これを満たす x は存在しないので、解なし CO x=1 a+1 完 **** BS)S-ve 1 √a+1 a+1 =+ a as-1のとき、解なし -US -1<a<1,1<a のとき, x=±- 平金 x2の係数が0のとき, x 2の項がなくなるの で,xの1次方程式に なる. -1→ -1→> α=1のとき, xがど このような値であっても, 0.x = 0 は成り立つ. a=-1のとき, xに どのような値を入れて も.0.x=-2 が成り 立たない. a-1 a²-1 aを定数とするとき, 方程式 ax2+(2-a)x-2=0を解け. =- 1 a+1 √a+1 a+1 (2) $30 II=D 文字係数の2次方程式(x2の係数) ≠0 に注意 a a-1 (a+1)(a-1) ->0 より, a+1>0 すべての つまり,a>-1 -1 -a-1 O 第2章 p.168 14

未解決 回答数: 1