学年

教科

質問の種類

数学 高校生

数1の一次不等式の問題⑴です。a-1じゃなくてaで考えてないのはなぜですか?aで考えてもいけますか?

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1)>x+αを解け。 ただし, αは定数とする。 0000 (2) 不等式 ax<4-2x<2xの解が1<x<4であるとき, 定数αの値を求めよ。 [(2) 類 駒澤大] 基本 34 重要 指針 文字を含む1次不等式(Ax> B, Ax<B など)を解くときは,次のことに注意。 ・A=0のときは,両辺を4で割ることができない。 一般に、「0」で割る」 •A0 のときは、両辺を4で割ると不等号の向きが変わる。いうことは考えない (1) (a-1)x>a(a-1) と変形し, a-1>0, a-1=0, a-1<0の各場合に分けて ax<4-2x ...... A (2) ax<4-2x<2x は連立不等式 と同じ意味。 4-2x<2x B まず,Bを解く。 その解とAの解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ (1) 与式から (a-1)x>a(a-1 ...... ①まず, Ax>Bの形に [1] α-1>0 すなわちα>1のとき x>a 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 [3] α-1 <0 すなわち α <1のとき 「α>1のとき x>a, よって (2) 4-2r a=1のとき 解はない, a<1のとき x <a ①は 0.x>0 sl>S ① x<a>x ①の両辺をα-1 (>0 で割る。 不等号の向 変わらない。 <0> 0 は成り立たない 負の数で割ると、不 の向きが変わる。 検討チ

未解決 回答数: 1
数学 高校生

数Ⅰ 不等式 写真の問題について、黄色のマーカーを引いている部分がよく分かりません😖 なぜ≦や≧でなく、<や>になるのか教えてください!

基本 例題 33 不等式の性質と式の値の範囲(2) 00000 x,yを正の数とする。 x, 3x+2y を小数第1位で四捨五入すると,それぞれ6 21 になるという。 (1)xの値の範囲を求めよ。 指針 (2)yの値の範囲を求めよ。 まずは、問題文で与えられた条件を、不等式を用いて表す。 基本 32 例えば,小数第1位を四捨五入して4になる数α は, 3.5 以上 4.5未満の数であるから, の値の範囲は3.5≦a <4.5である。 (2) 3x+2yの値の範囲を不等式で表し, -3xの値の範囲を求めれば, 各辺を加えるこ とで2yの値の範囲を求めることができる。 更に、各辺を2で割って, yの値の範囲 を求める。 (1) xは小数第1位を四捨五入すると6になる数であるか ら 答 5.5≦x<6.5 ① (2)3x+2yは小数第1位を四捨五入すると21になる数で あるから ①の各辺に3を掛けて 15.5 x 6.4, 5.5≤x≤6.5 などは誤り 20.5≦3x+2y<21.5 ② -16.5≧-3x> -19.5 負の数を掛けると、 すなわち -19.5<-3x≦-16.5 ③ 号の向きが変わる。 ② ③の各辺を加えて 20.5 -19.5x+2y-3x<21.5-16.5 したがって 1<2y<5 .. (*) 5 各辺を2で割って12 不等号に注意 (検討参照)。 正の数で割るとき 等号はそのまま。

解決済み 回答数: 1
数学 高校生

丸をつけたところがなぜ正だとわかるのかわかりません。教えてください🙏

8 数学的帰納法 (II) nが自然数のとき, 次の各式が成立することを数学的帰納法を 伺いて証明せよ。 ) 1²+2²+ ··· +n² = — —½n(n+1)(2n+1)………………….①℗ 1+ 1 1 3 1 + ・+・・・+ n 2n n+1 (2) i) n=1のとき 左辺 = 1, 右辺 = 2.1 1+1 -=1 となり, n=1のとき②は成立する. ii) n=k のとき, ② が成立すると仮定すると 1+ 2 ++ 1 1 2k +・・・+ M ......②' kk+1 eɛ1 ②' の両辺に 1 を加えると k+1 左辺を証明したい式 2 左辺 =1+1/+1/3+..+/+/ath にする +・・・+ kk+1 2k 1 2k+1 右辺 = + k+1 k+1 k+1 2(k+1) k k+1 k+2 ->0 (k+1)(k+2) <ここがポイント 1 1+ ・+・・・+ 1 2k+12(k+1) 2 k+1 k+1 k+2 すなわち, 1+1/2 1 2(k+1) +・・・+ k+1 k+2 手順は 37 と同じですが,n=kのときの式から,n=k+1のとき の式を作り上げるときに,どんな作業をすればよいのかが問題に 違うので,問題に応じてどんな作業をするかを考えなければなりません。 解答 i) n=1のとき 左辺=1,右辺 = 1/2・1・2・3=1 よって, n=1のとき, ① は成立する. ) n=kのとき 12+2+... +k^= = k(k+1)(2k+1)..... ここで, 2k+1 が成立すると仮定する. ①の両辺に(k+1)2 を加えて 左辺 =12+22+..+k²+(k+1)2 右辺 = 1/2k(k+1)(2k+1)+(k+1)2 ◆左辺に, 12+22+... +k²+(k+1)2 を作ることを考える -1/2 (k+1){(2k+k)+6(k+1)} =- =1/2 (k+1)(x+2)(2k+3) これは,①の右辺に n=k+1 を代入したものである. よって, ① は n=k+1 でも成立する. ゴ), ii)より, ① はすべての自然数nについて成立する. これは, ② に n=k+1 を代入したものである. よって, n=k+1 でも②は成立する. i), ii)より, すべての自然数nについて ② は成立する. ポイント 数学的帰納法を使って証明するとき, n=k のときを 仮定したら, n=k+1 のときを計算用紙に書いてお 2つの式の違いを見比べながらこれから行うべき 作業を決める 演習問題 138 nが自然数のとき, 次の各式が成立することを数学的帰納法を用 いて証明せよ. 1 +・・・+ 1-2 + 2-3++ (n+1)+1 (1) 1 1 (2) + + 22 + 32 + +.... 1 ≦2- n

解決済み 回答数: 2