学年

教科

質問の種類

数学 高校生

この 10c4という計算は10c6にはならないんですか?ならないとしたらなぜでしょう。nCr🟰nCn-rと私は習いました。

でで ご購 白チ・ ■基 基本 解説 に な生 コード! 例量 シ [追加] スモ 1 344 例題 準 34 余事象を利用した確率 (順列・組合せ利用) い確率を求めよ。 (2) 赤球4個と白球6個が入っている袋から同時に4個の球を取り出すと (1) 5枚のカード a, b, c, d, e を横1列に並べるとき, baの隣になら 取り出した4個のうち少なくとも2個が赤球である確率を求めよ。 CHART GUIDE 余事象の利用 〜でない, 少なくとも~ には余事象の近道あり 求めるのは, (1) baの隣になる場合 (2) 赤球が 0 個または1個の場合 確率である。 P(A)=1-P(A)=1- 5! 通り (1) 5枚のカードの並べ方は 「bがaの隣にならない」という事象は「bがaの隣になる」 という事象 Aの余事象A である。 aとbのカードをひとまとめにして, 1枚のカードと考える 4通り と、これと残りの3枚との合計4枚の並べ方は 4! 通り そのどの場合に対しても, ひとまとめにした2枚のカードの 並べ方は 2! 通り よって 求める確率は 4!×2! 5! 2・1 5 ·=1-- 本例題10.16.30 313> 5 =210(通り) (2) 球の取り出し方の総数は 10C4= 「少なくとも2個が赤球」 という事象は 球が0個または 1個」という事象 Aの余事象A である。 [1] 白球を4個取り出す場合 6C4=6C2=15 (通り) [2] 赤球を1個,白球を3個取り出す場合 4 C1 X6C3 = 80 (通り) [1],[2] は互いに排反であるから、赤球が0個または1個で ある場合の数は 15+80=95 (通り) 10・9・8・7 4・3・2・1 よって 求める確率は P(A)=1-P(A)=1- 95 23 210 42 の余事象の 0 000 2! 通り 残り3枚 ◆余事象の確率 少なくとも2個赤 | : 4 白 : 0 赤: 3, 白 : 1 赤 2, 白:2 赤: 1:3 赤: 0, 白 : 4 ◆ 余事象の確率 基 本 例題 35 CHART & GUIDE 100 枚の札 札を引く」 ANBは 互いに 余事象 1から100 が3の倍数 100 枚の 象をA, と 求め ここで, A={ ANE TRAINING 34③ (1) A,B,C,D,E,Fの6人が輪の形に並ぶとき, AとBが隣り合わない確率を求 め。 [類 神奈川大 ] (2) 赤玉5個、白玉4個が入っている袋から, 4個の玉を同時に取り出すとき、取り出 した玉の色が2種類である確率を求めよ。 である: したが Le 確率 PC [1] [2] [1] は 分がな したた ANE TRA 「た 1 あ

回答募集中 回答数: 0
数学 高校生

解の存在範囲の問題です (2)でtの存在範囲に持ち込むのは分かるのですが、|x|≧1が与えられているのに|X|で場合分けしているのは何故ですか

ポイント①! 1: y = -tx + ということです。 t² 2 (1) 直線OA の傾きは よって, 1:y=-t + t² 1 を満たす実数t (t≧1) が存在する + Y = -tX+ 2 2 ポイント! 最小値の 場合分け 2 (2) (X,Y) を通る が点 (X,Y) を通る y = − 1 ( x − 2²2 ) + 12/1/2 問題33の解答 1 :: 1:y=-tx + + 2 2 519 Explore (t0) であるから、1の傾きは t y .. -1 X -1 1 求める条件は, f(X) = - X° − 2Y + 1 ≦ 0 1 Y2-=X² + 2 1 O せん。つま 1 t² 1 存在条 ⇒ Y = -tX + + を満たす実数t (t≧1) が存在する ⇔f-2X-2Y + 1 = 0 を満たす実数t (t≧1) が存在する 2 2 f(t) = f - 2Xt − 2Y + 1 = (t - X) - X-2Y + 1 とする。 (i) |X|≧1 (X ≦ -1, X≧1) のとき←頂点で最小となるとき y=f(t) y=f(t) -11 A(t,1 X 22 X≦1-1≦X≦1) のとき← /y = f(t) ポイント [2]! 求める条件は, ✓ -1 X 1 f(-1)=2X-2Y+2≦0 または ← x=1のとき y≧x +1 または y≧-x+1 一区間の端点で最小となるとき y=f(t) t コメント! op -1 f(1)=2X-2Y+2≦0 ..Y ≧ X + 1 または Y≧ - X +1 以上 (i), (i) より求める範囲は次のとおり。 x≧1のとき 1 =-x²²+ 1 2 X 1 最小値をとるのがt=1のときなの かt=-1のときなのかを場合分け しなくても 「または」 でまとめて考 えられる(メント! 参照)。 -1 y 01 y=x+1 境界を含む y=-x+1 p=12/2x+1/12/2 -x² y=- ① 求める図では, 放物線と直線は接しているんだ。 y=-12x+1/1/28y=x+1からyを消去すると (x+1)^2 = 0 となるから, 放物線と直線はx=-1で接しているんだ。 放 物線と直線y=-x+1についても同じだよ。 ②通過領域の問題は入試でも頻出の重要問題だよ。 本間では結局の存 在条件に帰着させるんだけど,この部分は問題32 と同じ考え方だね。 ③ 2次方程式が解をもつかどうかは, 問題3でも学んだように, 最小値に ついて考察するから、 問題33 133 Cha 図形と方程式

回答募集中 回答数: 0
数学 高校生

(3)の0は、(2)では近似値?で13と16を使っているのになぜ(3)では分母は12にしているのですか?

ヒストグラムの選択 データを合わせた平均値や分散 ②のうち、複数の合計が20であるものは②だけであるので、A の 29 難易度 ★★ べて整数) をまとめたものである。 Aテストの得点を変量x, B テストの得点を変量で表し、 てあるクラスの加入の生徒の入テストとBテストの再度 (100点満点であり、 y 100円 90 yの平均値をそれぞれで表す。 ただし、表中の数値はすべて正確な値であり, 四捨五入され、 いないものとする。 80円 70 60 50 40 30 20 [[10] 生徒番号 1 *** X 62 *** y 57 ww 47 55 1220 A 61.0 B 20 合計 平均値 中央値 (1) A=アイウ, B=エオ」 (2) 変量xと変量yの散布図はキ www [x-x (x-x)² y-ỹ (-y)² (x-x)(y-y) 169.0 13.0 13.0 1.0 1.0 -6.0 0 1020304050 60 70 80 90 100 X 0.0 0.0 1.5 62.5 42.0 カ 42.5 である。 60 100 y 90 80 70 150808010 40 *** 36.0 3064.0 153.2 30 目標解答時間 20 に当てはまるものを、次の⑩~②のうちから一つ選べ。 ① 10] 3.0 0.0 0.0 -2.0 ... 9分 9.0 5014.0 250.7 90.5 0 102030405060 70 80 90 100 XC *** -18.0 -3468.0 -173.4 -44.0 y [100 90 80 70 60 50 得点は 40 30 20 10 ② 30 A, B. た。 ただ (1) 各 スト 10 20 30 40 50 60 70 80 90 100 X (3) このデータの特徴に関する説明のうち,正しいものはクである。 クに当てはまるものを、次の⑩~②のうちから一つ選べ。 ただし, 変量xと変量yの散布 キのときとする。 図は ⑩ Bテストの得点の標準偏差はAテストの得点の標準偏差の1.5倍より大きい。 ① Aテストの得点の最頻値は62.5点である。 ② 上の20人の生徒の得点のデータに, Aテストで90点, Bテストで80点をとった生徒1人 の得点のデータを加えたとき, xとyの相関係数は増加する。 (配点10) <公式・解法集 28 30 31 33 34 C 以 (2)

回答募集中 回答数: 0
数学 高校生

1番です。解説は[1]などの記述に数行使っているため 最後に3つまとめて答えを示していますが、 私の記述の場合、同じことを2回書いてるような記述になっています。この記述でも問題ないですか?

重要 例題110/2次不等式の解法 (4) 次の不等式を解け。 ただし, aは定数とする。 (1) x2+(2-a)x−2a≦0 (2) ax² ≤axise 基本106) 指針 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0 の2次方程式を解く。 それには の2通りあるが,ここで ① 因数分解の利用 [2] 解の公式利用 は左辺を因数分解してみるとうまくいく。 α<βのとき (x-a)(x-β)>0x<a, B<x (x-a)(x-B) <0⇒a<x<B α, βがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x²の係数に注意が必要。 > 0, a = 0, a < 0 で場合分け。 CHART (x-a)(x-B) ≧0の解α, βの大小関係に注意 解答 (1) x²+(2-a)x-2a≦0から (x+2)(x-a) ≤0 [1] a<-2のとき, ① の解は [2] α=-2のとき, ①は (x+2)² ≤0 よって, 解は x=-2 [3] -2 <a のとき, ① の解は-2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 -2 <αのとき -2≦x≦a ax(x-1) ≤0 (2) ax² ≦ax から [1] a>0のとき, ① から よって, 解は 0≤x≤1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 [3] a<0 のとき, ① から x(x-1) 20 よって, 解は x≦0, 1≦x 以上から x(x-1) ≤0 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のとき すべての実数; a<0のときx≦0, 1≦x ① 00000 [1] teli [2] [3] Vital -2 ① の両辺を正の数α で割る。 0≦0 となる。 は 「<または=」 の意味なので、 <と = のどちらか 一方が成り立てば正しい。 < ① の両辺を負の数αで割る。 負の数で割るから, 不等号の向き が変わる。 注意 (2) について,ax Sax の両辺を ax で割って, x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 177 3章 13 2次不等式

回答募集中 回答数: 0