学年

教科

質問の種類

数学 高校生

数Aのさいころの目の最大値・最小値の問題です。 (3)なのですが、教科書の黄色マーカー部分P(BかつC)の求め方が分かりません。 また、ノートの黄色マーカー部分なのですが、 P(B)+P(C)-P(BかつC) はもともとP(BUC)のことを意味しているのでしょうか。 解説を... 続きを読む

231 最小値 さいころを同時に投げるとき、次の確率を求めよ。 目の最大値が4以下となる確率 目の最大値が4, 最小値が2となる確率 条件の言い換え (1) 最大値が4以下 すべて 1, 2, 3,4のいずれかの目が出る。 ②) (1)の考え方では, 「1,1,1,1」 と出て, 最大値1の場合 (2) 目の最大が4となる確率 などが含まれているから, その場合を除く。 「1, 3, 2, 1」 と出て, 最大値3の場合 最大値がんとなる確率は,最大値が以下の確率から(k-1)以下の確率を引け [最大値4 Action>> (3) すべて 2~4の目が出て、 2と4の目が少なくとも1回ずつ出る。 > 最大3以下 目の最大値が4以下であるためには, 4個のさいころ の目がすべて 1,2,3,4のいずれかであればよい。 よって、求める確率は (²4) * = (²/²)* 3 4 (1)-(12/2)=1/16 すべて すべて2,3 求める確率は - (2) 目の最大値が4となるのは, 目の最大値が4以下となる場合から、目の最大値が3以 下となる場合を除いたものである。 ここで、目の最大値が3以下となる確率は よって, 求める確率は (3) 4個のさいころの目が すべて 2,3,4のいずれかである事象をA, 3,4のいずれかである事象をB, 16 81 16 1 175 81 16 1296 (1)-1 のいずれかである事象をCとすると, P(A)-{P(B)+P(C)-P(B∩C)} 4 - ( ²³ )* - {( ² ) * + ( ²³ ) * - ( ² )*)}= = (08/10)710/4+0+ 25 最大4以下 「目の最大値が以下」 や 「目の最小値がk以上」 である確率は求めやすい。 これを用いて (2) を求める。 Point 参照。 3以下 Tex 4個のさいころの目がす べて 1, 2,3のいずれか であればよい。 P(最大値が4) Point.…. さいころの目の最大値・最小値- (1) P(最大値がk)=P(最大値がk以下) -P (最大値がk-1以下 ) (2) P (最小値がk)=P(最小値がk以上) -P (最小値が+1以上) OLA P(最大値が4以下) -P (最大値が3以下) B' ∞ ■ 2314個のさいころを同時に投げるとき次の確率を求めよ。 (1) 目の最小値が4以上となる確率 (2) 目の最小値が4となる確率 (3) 目の最大値が5, 最小値が2となる確率 章 17 いろいろな確率 p.446 問題231

回答募集中 回答数: 0
生物 高校生

答えがなくて分からないのですが、解答わかる方、教えてください🙇🏻‍♀️

OG JAJAH 高 ⅣV 生態系とその保全について、以下の問1~問2に答えてください。 130M 一次消費者 二次消費者 三次消費者 /2四次消費者 形細胞 問1 特定の物質が生物体中に高濃度に濃縮されることを生物濃縮という。 特に食物連鎖の過程 高濃度に濃縮されることがあり、問題となっている。 表1は, 西部北太平洋における表 層水およびそこに生息する生物体中のポリ塩化ビフェニル (以下PCB) 濃度を示したもの である。 表1の栄養段階は生物の食性や生態を考慮して仮定したものである。 PCB は魚類 やイルカ類などから高濃度で検出されており、それらを食物として利用するヒトの健康へ 人の悪影響が懸念されているために現在では製造が中止されている。 PCB の生物濃縮に関す る文として正しいものを下の1~5のうちから一つ選び番号を記入して下さい。 STAR J*****©+H®X®V/(X) 表1 ***S 北村美 | PCB 濃度(相対値)( 0.00015 表層水 動物プランクトン 小型の魚類 イカ類 イルカ類 単 27 +44 38 樹状細胞 (注) PCB 濃度は動物プランクトン中のPCB 濃度を1とした相対値で示す。 2, 056 X. イルカ類は小型の魚類に比べてPCB を濃縮しにくい。 tash 2. 生物体中のPCBは生物間で受け渡されるごとに一定の割合で濃縮される。 3. 食物連鎖一段階当たりのPCB の濃縮率は高次よりも低次の段階で大きくなる。 4 二次以上の消費者では表層水に比べて10万倍以上のPCB の濃縮がみられる。 LPH 5. PCB は尿とともに体外に排出されやすい物質である。

解決済み 回答数: 1
数学 高校生

問15のどこが違うか教えてください

56 問15 解 100 例題 8 &HI ある病原菌を検出する検査法が, & C. 16 病原菌がいないときに 陽性と誤って判定してしま 止まう確率は2% である。全体の1%にこの病原菌がいるとされる検体の中か 1個の検体を取り出して検査するとき, 次の確率を求めよ。 X (1) 陽性と判定される確率 (2) 陽性と判定されたときに,実際には病原菌がいない確率 取り出した検体にこの病原菌がいる事象を4. この検査法で陽性 と判定される事象をBとすると P(A) = 1 100 P(A)= PA (B) 1-RA (1) 検査で陽性と判定されるのは, 次の2つの場合である。 (i) 病原菌がいる検体が検査で陽性と判定される場合 (ii) 病原菌がいない検体が検査で陽性と判定される場合 ここで, (i) の事象は A∩ B, (ii) の事象は A∩B で表され, これらは互いに排反であるから I 100. 9703 10000 9 P(B)=P(A∩B) + +P(A∩B) 99 100 X × P₁(B) = = P(A)×P₁(B)+P(Ā)×P₁(B) 1 99 99 + 100 100 (2) 求める確率は,条件付き確率 Ps (A)であるから PB (A)= P(A∩B) 198 P(B) (100 100 PCB) 10000 9703 = 例題8で,陰性と判定されたときに,実際には病原菌がいる確率を求 めよ。 PE (A) P(ANB) →P.63 練習問題11 P(ANB) = 99 100 9703P(豆) 297 2 10000 10000 3 297 10000 ÷ 100 2 100 100 1 100 P こ え

回答募集中 回答数: 0
1/8