学年

教科

質問の種類

数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
数学 高校生

微分係数が存在するかしないかって 右側極限の微分と左側極限の微分が合うか合わないかのみによるという理解でよいですか?

連続で [+] (②) 連続 T 分 ■数 60 関数の連続性と微分可能性 /関数f(x)=x^2/x-2|はx=2において連続であるか、 微分可能であるかを調べ p.106 基本事項 62 検討 [例題] f(x)がx=αで連続limf(x)=f(α) が成り立つ f(x) が x=αで微分可能微分係数 lima+h)-S(α) h オー lim f(x) X 2+0 これらの極限について調べる。 f(x)はx=2の前後で式が異なるから、例えば連続性については、右側極限 20, 左側極限x2-0 を考え,それらが一致するかどうかを調べる。 =limx2(x-2)=0 x-240 lim f(x) x-2-0 =lim{-x2(x-2)}=0 x2-0 また, f(2)=0 であるから lim f(x)=f(2) X-2 よって, f(x)はx=2で連続である。 次に = lim h+0 ƒ(2+h)-f(2) h lim h-0 f(2+h)-f(2) h =lim h→+0 h→+0 =lim(2+h)=4 ya lim h-0 (2+h)³h-0 h (2+h)²(−h)-0 h =lim{-(2+h)"}=-4 h-0 h→+0とん → 0 のときの極限値が異なるから, f' (2) は存在しない。 すなわち, f(x)はx=2で微分可能 ではない。 微分可能連続の利用 f(x)がx=αで微分可能x=α で連続 y=f(x) (2) f(x)= X 0 107 00000 F p.97 基本事項■ が成り立つ。 よって、上の例題のような問題では,微分可能性から 先に調べてもよい(「微分可能」がわかれば、極限を調べなくても 「連続である」という結論を出すことができる)。 また、⑩の対偶「f(x)がx=4で連続でない⇒xaで微分 「可能でない」 も成り立つ。 x 1+2 + が存在する。 4A= を用いて、絶対値をはず A (A20) -A (A<0) ◄f(2+h)-(2+h)²|h|| ん→ +0のとき >0 ん→-0のとき <0 に注意して、 絶対値をは ずす。 練習 次の関数は, x=0 において連続であるか, 微分可能であるかを調べよ。 260 (x=0) (1) f(x)=|x|sinx (x=0) 微分可能 [(1) 類 島根大〕 p.115 EX 48 3 章

回答募集中 回答数: 0
1/7