学年

教科

質問の種類

数学 高校生

図形と計量 (2) なぜ、BE=5/3になるのか分かりません。 何度計算しても、分母が3になりません。

11:54 all 4G 98 × 高1・高2トップレベル数学IAIIB + C (ベクトル) 第4講三角比といえば 目 目次 追加済み 0.75× まだ (DE+3)=Fc(2.0x) 速度 1.00x AECB QAFADay [C (FB+3)-24 2(ER+3)=4EC EB+3-2 FB+ Ec= これと 10 BEEF (+1) 2 E D BE +5 5 2 BE = BE: 3 2 B 自動 CRECRUIT 10:58 25:40 LJ 三角比といえば・・・ 44 円に内接する四角形ABCD が AB=3, BC=2,CD=1, DA=4を満たしている. また, 直線AB と直線 CD の交点をE, 直線AD と直線BCの交点をF. 線分AC と 線分 BD の交点をPとし、 三角形BCE の外接円と直線 EF の交点でE以外のものを 点 Q とする. 次の各問いに答えよ. (1)点Qは三角形 CDF の外接円上にあることを示せ (2) 線分 BD, 線分 BE, 線分 DF. 線分 EF の長さをそれぞれ求めよ. (3) 四角形ABCDの面積Sを求めよ. (4) 線分AP の長さを求めよ. (5) sin∠APB の値を求めよ. 【答】 (1) 略 (2BD= 55 7 BE E-f. DF- DF=3. EF== 2065 (3) 2√6 12 (4) 6√385 35 4√6 (5) 11 【解答】 (1) B.C. Q. Eは同一円周上より, ∠CQE=∠ABC また, A, B, C, D は同一円周上より, ∠ABC = ∠CDF よって∠CQE=∠CDF より Q. C, D. F は同一円周上にある. (2) A, B, C, Dは同一円周上より ∠BAD + ∠BCD = よって cos∠BAD+ cos∠BCD=0 + 32+42-BD2 22+12-BD2 2×3×4 2×2×1 =0 55 BD= 7 方べきの定理より. BE(BE+3)=EC(EC+1) ………① BD²= 55 △EBCと△EDA が相似であることより EC (BE+3)=2:4 5 3 BE+3=2EC これを①に代入,整理することでBE = を得る.また,EC=13 である. メネラウスの定理より 7 DF EC AB DF 3 =1 =1 . DF= AF CD BE 3+0-14, AF-4+ AE=3+ DF +4 1 5 3 COS ∠BAD= 32+42-BD^ 2×3×4 より < 戻る 次へ >

解決済み 回答数: 1
数学 高校生

(2)で解説に△BECはBE=CEと△AEFはAE=EFと書いてあるのですがそれはどこからの情報ですか?? それとこの問題自分には複雑に見えるので、見通しの立て方も教えて欲しいです!!

きな で よ マリ =い M 0 ~ 基 -2/3+1 2 W 4 ~24CPS4.4 61 平面(Ⅱ) 105 a+ △ABCにおいて, ∠C=90°, AB=10a, BC=6α とする. 辺BCの Cの側への延長上に, CA = CD とな る点Dをとる。 辺 ABの中点をEとし, 点Bから,直線ADに下ろした垂線を BF とするとき、次の問いに答えよ. 10a /E / B6a-C C, F は AB を直径とする円周上にあることを示し,さらに、 EF=EC であることを示せ. ∠ABC=0 とおいて,∠CEF=90°であることを示せ X CEF の面積をαで表せ. 2>>0 (1)2点C,Fが同一円周上にあることを示すときは, 精講 (2) BEC は BE=CE をみたす二等辺三 角形だから,∠ECB=0 A 90°-0 F 45° ∠BEC=180°(∠ABC + ∠ECB) E 次に,∠EAF = ∠BAC+ ∠CAD =180°-20 -0-03- B C D =90°-0+45°=135° 0 0 △AEF は AE=EF をみたす二等辺三 角形だから, ∠AFE = ∠EAF よって,∠AEF=180°-2(135°-0) =20-90° ∠CEF=180°-(∠BEC+ ∠AEF) =180°(180°-20+20-90°)=90° (3)(2)より,△CEF は, 直角二等辺三角形. △CEF= F-15a 5a=25a² 2 FRA ①円周角の定理の逆 (56円周角注) ② 向かい合わせの角の和が180° (2)(1)から想像できることは, 等しい角度があちこちに存在するらしいこと (3)(2)より, CEFは直角三角形であることがわかっているので,あとは ECとEF の長さですが, (1) によると・・・・・・. ポイント 図形問題では, 与えられた図に長さや角度の情報をす べて書き込むとその設問を解くための情報がボケる. 設問に合わせて必要な部分をぬき出した図を使う + 第4章 「シータ」と呼びます. 角度を表すときによく使われます. 注2)で用いられている文字は,α,β などと同じギリシャ文字の1つで、 注 この基礎問では,(1), (2) それぞれの設問に合わせてぬき出した図をかい ています。 演習問題 61 解答 (1)∠ACB=∠AFB=90° だから、 4点 A, F, C, B は ABを直径とする円周上 にあり、その円の中心はE. よって, EF, EC はこの円の半径 ∴EF=EC + 2 F A E 平面上の三角形ABC で, 3辺の長さが AB=10,BC=6, CA=8 であるものについて、 外心をO, 内心をIとし, OからIへ のばした半直線と外接円との交点を M, Iから0へのばした半直線 と外接円との交点をNとする. このとき, 次の問いに答えよ. (1) 三角形 ABC の外接円の半径R と内接円の半径r を求めよ. (2) 線分 OI の長さを求めよ。内で1 (3) 線分 IM, IN の長さを求めよ.

解決済み 回答数: 1
1/5