学年

教科

質問の種類

数学 高校生

図形と計量 (2) なぜ、BE=5/3になるのか分かりません。 何度計算しても、分母が3になりません。

11:54 all 4G 98 × 高1・高2トップレベル数学IAIIB + C (ベクトル) 第4講三角比といえば 目 目次 追加済み 0.75× まだ (DE+3)=Fc(2.0x) 速度 1.00x AECB QAFADay [C (FB+3)-24 2(ER+3)=4EC EB+3-2 FB+ Ec= これと 10 BEEF (+1) 2 E D BE +5 5 2 BE = BE: 3 2 B 自動 CRECRUIT 10:58 25:40 LJ 三角比といえば・・・ 44 円に内接する四角形ABCD が AB=3, BC=2,CD=1, DA=4を満たしている. また, 直線AB と直線 CD の交点をE, 直線AD と直線BCの交点をF. 線分AC と 線分 BD の交点をPとし、 三角形BCE の外接円と直線 EF の交点でE以外のものを 点 Q とする. 次の各問いに答えよ. (1)点Qは三角形 CDF の外接円上にあることを示せ (2) 線分 BD, 線分 BE, 線分 DF. 線分 EF の長さをそれぞれ求めよ. (3) 四角形ABCDの面積Sを求めよ. (4) 線分AP の長さを求めよ. (5) sin∠APB の値を求めよ. 【答】 (1) 略 (2BD= 55 7 BE E-f. DF- DF=3. EF== 2065 (3) 2√6 12 (4) 6√385 35 4√6 (5) 11 【解答】 (1) B.C. Q. Eは同一円周上より, ∠CQE=∠ABC また, A, B, C, D は同一円周上より, ∠ABC = ∠CDF よって∠CQE=∠CDF より Q. C, D. F は同一円周上にある. (2) A, B, C, Dは同一円周上より ∠BAD + ∠BCD = よって cos∠BAD+ cos∠BCD=0 + 32+42-BD2 22+12-BD2 2×3×4 2×2×1 =0 55 BD= 7 方べきの定理より. BE(BE+3)=EC(EC+1) ………① BD²= 55 △EBCと△EDA が相似であることより EC (BE+3)=2:4 5 3 BE+3=2EC これを①に代入,整理することでBE = を得る.また,EC=13 である. メネラウスの定理より 7 DF EC AB DF 3 =1 =1 . DF= AF CD BE 3+0-14, AF-4+ AE=3+ DF +4 1 5 3 COS ∠BAD= 32+42-BD^ 2×3×4 より < 戻る 次へ >

解決済み 回答数: 1
数学 高校生

至急! sとtの求め方を教えて欲しいです。 2枚目の問題もお願いします。

まずは、後攻の 第4問~第7問は、いずれか3問を選択し、解答しなさい。 第5回 数学ⅡB C 第6問 (選択問題) (配点 16 ) 1辺の長さが V である正方形の紙を折ってできる図形について考えよう。 次の左の図のように紙の四つの頂点を A, B, C, Dとし、2本の対角線の交点) をDとする。正方形の紙を対角線 ACを折り目として折り, 右の図のように折っ た後の頂点BをEとし∠EOD = 0 とおく。 ただし, 0°0 180°とする。 D (2) ∠EAD=60° とする。 ED= ク であるから, 0= ケである。 また 52 CE= CD=サ である。 Op-Oc B このとき OA-OB = ア OA. OD= イ である。 2.+= ○Dto 人 ケの解答群 ORICA 30° ① 45° ② 60° 90° ④ 120° ⑤ 135° ⑥ 150° コ サの解答群(同じものを繰り返し選んでもよい。) Ⓒ OA + OE 0 OA - OE ②ON+OE 3 OA + OD ④OA - OD 6 -OA + OD (1) 0=60°のとき ウ OE. OD= ED = オ 1.1.— ED:1+1-2.1/2 エ 2 正解 であり である。 AE.AD = キ 2 (数学 II. 数学 B 数学C第6問は次ページに続く。) (CE-CA)(CO-CA) (i) 3点 E, C,Dを含む平面をαとし, Aからに引いた垂線との交点を Hとする。Hは上の点であるから, 実数 s, tを用いてCH = SCE+ID の形に表される。 AH.CE=AH.CD= である。 AM: AC+CH AULEF AHACE =(AC+C)CE - LACESCENT CO ○ ス t= タ AH-CE により CH =SCOAtor)++(aAton)) =(stt)OA+Soft (数学 II. 数学 B. 数学 第6問は次ページに続く。) =AN(OMO) =A1011-01+ ale4-01) AH-CE=(AC+CH)-CE GON-ACP ACCE+SCEL+CE-C7 23 AH=(AC+(H) Act (st+jaht so + tap = (stt-1)aA +ac+sastop

解決済み 回答数: 1
数学 高校生

数Iの図形の問題です。 答えは(1)(2)25メートル(3)9.1メートル(4)ア 12°ィ 51°です。 解説お願いします!

T 右の Gと辺 うする。 BC= AD= AAE SBC ÷x10 5¢ 右の図の 角形であり、 外心、内心 このときㄥ 3点 D,E, 円の円周上に 中心 次の図にお B チェバの理を 1 -6. ある学校では、創立50周年を記念し、グラウンドで 人文字を作り,ドローンを使って上空から撮影する計 画を立てている。 ドローンはその中央に下向きにカメラがついており, 撮影を行うことができる。 人文字はたて30m, 横40m の長方形であり,右の図のようにその長方形の対角線の 上空に飛ばすものとする。 また,∠AEC=0をドローンのアングルというこ とにし、ドローンのアングルは0°0<180°の範囲に TO ドローン C 30m 人文字 -40m B A おいて1°ごとに整数値で設定をすることができるようになっている。 また、ドローンの大きさは無視できるものとする。■ 【この問題では三角比の表を用いてよい】 (1) AHの長さを求めよ。 25/2 (35 B 625 1250=& (2) ドローンのアングルが0=90°のとき,ドローンの高さ EH を求めよ。 645 (3) ドローンのアングルが0=140°のとき, ドローンの高さ EHを求めよ。 (4) ドローンの高さが20m以上50m以下のとき, ドローンのアングル0について, 0 のとりうる値の範囲を三角比の表を用いて求めると 2 ア S イ である。 ただし,空らんは整数値で求めよ。 '03" cle +°18 net

解決済み 回答数: 1
1/29