数学
高校生
解決済み

至急!
sとtの求め方を教えて欲しいです。
2枚目の問題もお願いします。

まずは、後攻の 第4問~第7問は、いずれか3問を選択し、解答しなさい。 第5回 数学ⅡB C 第6問 (選択問題) (配点 16 ) 1辺の長さが V である正方形の紙を折ってできる図形について考えよう。 次の左の図のように紙の四つの頂点を A, B, C, Dとし、2本の対角線の交点) をDとする。正方形の紙を対角線 ACを折り目として折り, 右の図のように折っ た後の頂点BをEとし∠EOD = 0 とおく。 ただし, 0°0 180°とする。 D (2) ∠EAD=60° とする。 ED= ク であるから, 0= ケである。 また 52 CE= CD=サ である。 Op-Oc B このとき OA-OB = ア OA. OD= イ である。 2.+= ○Dto 人 ケの解答群 ORICA 30° ① 45° ② 60° 90° ④ 120° ⑤ 135° ⑥ 150° コ サの解答群(同じものを繰り返し選んでもよい。) Ⓒ OA + OE 0 OA - OE ②ON+OE 3 OA + OD ④OA - OD 6 -OA + OD (1) 0=60°のとき ウ OE. OD= ED = オ 1.1.— ED:1+1-2.1/2 エ 2 正解 であり である。 AE.AD = キ 2 (数学 II. 数学 B 数学C第6問は次ページに続く。) (CE-CA)(CO-CA) (i) 3点 E, C,Dを含む平面をαとし, Aからに引いた垂線との交点を Hとする。Hは上の点であるから, 実数 s, tを用いてCH = SCE+ID の形に表される。 AH.CE=AH.CD= である。 AM: AC+CH AULEF AHACE =(AC+C)CE - LACESCENT CO ○ ス t= タ AH-CE により CH =SCOAtor)++(aAton)) =(stt)OA+Soft (数学 II. 数学 B. 数学 第6問は次ページに続く。) =AN(OMO) =A1011-01+ ale4-01) AH-CE=(AC+CH)-CE GON-ACP ACCE+SCEL+CE-C7 23 AH=(AC+(H) Act (st+jaht so + tap = (stt-1)aA +ac+sastop
(ii) 4点A, E, C, D を頂点とする四面体をKとする。 K についての記述と して、次の①~③のうち、正しくないものは チ である。 チ の解答群 △AEC と △ECD は合同ではない。 辺 ACの長さの方が辺DEの長さより長い。 4点 A, E, C, D をすべて通る球面が存在する。 ③点HはECD の内部にある。

回答

✨ ベストアンサー ✨

間違っていたらすみませんが…

図に示した通りだとすれば、
CH=(2/3)CE+(2/3)CDなので、
Hは△ECDの外部です

この回答にコメントする
疑問は解決しましたか?