学年

教科

質問の種類

数学 高校生

式と曲線です (2)から何をやっているのかあまり分かりません💦 式の通りに変形するのはできるのですが、C2とC'2がの関係が全く分かりません。図を書いていただけるなら書いて頂きたいです。 (3)の第1象限において一致する、というのもわかりません。 分かりにくい点があったら... 続きを読む

111 目標解答時間 12分 90 60 1 2+cos0 座標平面上に曲線 C1, C2 がある。 原点0を極, x軸の正の部分を始線とする極座標 (r, 0) につい ... ①,r=2+cos0 ・・・・・・ ②と表される。 ただし、 iとC2の方程式はそれぞれr= 0202とする。 C を直交座標(x, y) についての方程式で表すことを考える。 9の値によらず、3+cos00であり,r>0である。 したがって ①は2r+rcos0=1 と変形 でき,r= ア イ rcosoイであるから, 2 =1である。 ] の解答群(同じものを繰り返し選んでもよい。) ⑩x ①y ② x2+ye よって, 方程式 1x2+1 I y²+ x+ye 4x'+4y=-200+1 オ lx=1...... ①'が得られる。 ①'の表す 2次曲線は 楕円であり,この楕円上のすべての点(x, y) に対して, ① が成り立ち、かつr> 0から得られる条 件イ <1も成り立つ。 よって, ①' は C と一致する。 (2)C2 を直交座標 (x, y) についての方程式で表すことを考える。 ②の両辺を倍すると, 2 カ である。さらに,この式の両辺を 2乗すると 逆が成り立つ 4x48= 472600 ②② x+y^2x3-3x2-4y2+2x2y2-2xy=0 ...... ②' である。 ②x+y+y ③x2+y-y カの解答群 ⑩x+y+x ①x2+y^-x また,C2 と ②'の表す曲線 C2' について キ キの解答群 ⑩ C2 と C'は一致する ①C2にのみ含まれる点があり,C2' にのみ含まれる点はない ② Cź'にのみ含まれる点があり,C2にのみ含まれる点はない ③C2にのみ含まれる点と C にのみ含まれる点がともにある 3 C と C'は第1象限において一致する。 直線 y=x と2曲線 x+yi2x33x24y2+2xy2-2xy2=0, ウ エ y²+ オ ] x=1の第1象限における 交点をそれぞれ A,B とすると, 線分ABの長さは! クケ + コ サ である。(配点 10) シス (公式・解法集 131 回 回

解決済み 回答数: 1
1/12