学年

教科

質問の種類

世界史 高校生

輸出高とは輸出の量ではないんですか?どうして生糸になるのかがよく分からないです。教えていただきたいです🙇‍♀️🙇‍

表 日本における重要物資の国別輸出入高 (単位: 100 万円) 1941年国別輸出入高 合計 アメリカ 中国 満洲 その他 1944年国別輸出入高 合計 関東州 中国 満洲 その他 輸油 入 属類炭 鉱油石 鉄 鉱・金属 531 110 61 86 類 361 265 2 2 10 143 114 15 マ蘭仏 マレイ 27 ※1 364 175 136 マレイ 24 印 582 107 (蘭 印 11 63 10 [海峡植民地11 ※3 印13 127 102 24 158 56 77 インド8 118 94 実綿 綿 392 33 「インド 94 115 237 231 イン ド 6 ブラジル 59 輪生 糸 216 191 11 7 3 綿織物 284 8 40 10 蘭 印 63 49 インド36 出絹織物 42 4 2 13 関東州18 35 32 1 32 5 6 19 仏蘭仏 印 4 「フィリピン5 印 3 印 2 (※1) マレイ: 現在のマレーシア。 (※2) 蘭印: オランダ領東インド。 現在のインドネシア付近をさす。 (※3)海峡植民地: マレー半島におかれたイギリスの植民地の総称。 現在のシンガポールなどをさす。 ( 『横浜市史資料編2 日本貿易統計』により作成) メモ ・原料を国内で調達していた D の輸出高の減少率が最も大きい。 今までの輸入元から輸入されなくなった物資を,中国や満洲からの輸入で補おう 車でした。 そのうえで, E ことを目的として, 日本は東南アジアへと進出した。 D に入る語句 a 綿織物 b 生糸 E に入る文 C 不足した資源を南方から獲得し, 日本の国力を維持して戦争を継続させる 過剰になった資源を活用し, 東南アジア諸国を欧米の植民地から解放する 1 D-a E-c 2 D-a E-d 3 D- b E-c 4 D-b E-d - 84-

回答募集中 回答数: 0
数学 高校生

ここからがよくわかりません 解説お願いします🙇‍♀️

436 重要 例題 18 等比数列と対数 00000 |初項が3, 公比が2の等比数列を {a} とする。 ただし, 10g102=0.3010, 10g103=0.4771 とする。 さ (1) 10° <a<10 を満たすnの値の範囲を求めよ。 (2)初項から第n項までの和が30000 を超える最小のnの値を求めよ。 基本11.13 指針等比数列において, 項の値が飛躍的に大きくなったり,小さくなったりして処理に 解答 るときには,対数(数学II)を用いて,項や和を考察するとよい。 (1) 10°<a<105 の各辺の 常用対数 (底が10の対数) をとる。 (2)(初項から第n項までの和) > 30000 として 常用対数を利用する。 (1)初項が3,公比が2の等比数列であるから an=3.2n-1 10° <a<10°から 103<3・2"-1<105p 各辺の常用対数をとる{nd 10g1010° 10g1032"-1 <10g10105 3<log103+(n-1)log102<5)=S. "S="+"S= |an=arn-1 |10g10103310g1010=3, log 103.27-1 =10g103+10g1027-1 10g102_{1} = logo3+(n-1)log2 5-0.4771¿=1+mds- よって ゆえに 1+ 3-10103 log102 5-10g103. < n < 1+ よって 1+ 3-0.4771 0.3010 <n<1+ すなわち 9.38・・・・・・ <n<16.02...... ( ed: nは自然数であるから 10≦x≦16 0.3010 1-(1-14) (2) 数列{an} の初項から第n項までの和は |log1010510g1010= 5 ③ ③ 3(2n-1) =3(2-1) 2-1 3(2-1)>30000 とすると 2"-1>104 ① ここで, 2">104について両辺の常用対数をとると nlog10 2>4 S=(S)◄Sn= ‚= a(r”−1) r-1 |10000=10 21=1024であるから 213-1024-8=8192 よって n> 4 log102 0.3010 = 13.2...... 12.9.2¹4-1024-16=1638 (bo) このことから,①を ゆえに,n≧14のとき2" > 10 が成り立ち, 214 は偶数で あるから 214 > 104 +1 ゆえに 214-1>104 bon 2"-1 は単調に増加する (*) から, ①を満たす最小のn の値は n=14 すんの値を調べても (*) 21が 「単調に 加する」とは,n の 大きくなると2"-10 も大きくなるという

未解決 回答数: 1
1/1000