学年

教科

質問の種類

数学 高校生

同じ写真で質問失礼します。B=-3までは理解したのですがその後の計算の道筋が分からないので教えて欲しいです

本 12 等比中項 00000 実数a, b, cはこの順で等比数列になり, c, a,bの順で等差数列になる。 C この積が27であるとき、 a, b, c の値を求めよ。 等比数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公比として a, ar, are と表す [類 成蹊大 〕 p.427 基本事項 基本4 (公比形) ②] 中央の項α, 公比rとしてar', a, ar と表す (対称形) 3 数列 a,b,cが等比数列⇔ b=ac を利用 (平均形) 等差数列をなす3つの数の表し方は,次の3通り (p.419 参照)。 ① 公差形 a, a+d, a+2d と表す ② 対称形 a-d, a, a+d と表す ③] 平均形 26=a+c を利用 数列 a, b, c が等比数列をなすから b2=ac 429 1 章 ② 等比数列 ・ズ b=-27 実数であるから b=-3 これを①,② に代入して これらからcを消去して 左辺を因数分解して ac=9.2a=c-3 2a2+3a-9=0 (a+3)(2a-3)=0 ① <3 平均形 b=ac を利用。 C. a b c の積が-27であるから ①③ に代入して 数列 c, a, b が等差数列をなすから 2a=c+b 2 abc=-27 ... ③ αはc, bの等差中項。 463=(-3)3 実数じゃない ときは? c2a+3 を ac=9 に代入。 3 これを解いて a=-3, ac=9に代入して 2 α=-3のときc=-3 3 よって (a, b, c) = (-3, -3, -3), a=1/2 のとき c=6 別解 数列 α, b,cが等比数列をなすから,公比をと公比形 a, ar, ar" と -3. 2 すると b=ar,c=ar2 a,b,cの積が27であるから abc=-27 よって a・arar2=-27 すなわち (ar)=-27 ゆえに ar=-3 b=ar=-3であるから ac=9 ① また、数列 c, a, b が等差数列をなすから 表す。 公差0 VATE 1 検討 2 対称形を用いる。 la=br-c=br とすると by '.b·br=-27 2a=c+b よって 2a=c-3 ② ①,② から, c を消去して 2a2+3a-9=0 よって 6=-27 ゆえに b=-3 以下,上の解答と同様に計算する。

解決済み 回答数: 1
数学 高校生

この問題自体は理解出来ているのですが書き込みを加えたところについて質問です。 rのn乗=Pのn乗のとき奇数の場合と偶数の場合でr=Pかr=±Pか決まる、という方程式(?)が前ページに乗っていたのですが、これを使えるのが実数の範囲でみたいなことを解説動画で言っていて(理解出来... 続きを読む

本 12 等比中項 00000 実数a, b, cはこの順で等比数列になり, c, a,bの順で等差数列になる。 C この積が27であるとき、 a, b, c の値を求めよ。 等比数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公比として a, ar, are と表す [類 成蹊大 〕 p.427 基本事項 基本4 (公比形) ②] 中央の項α, 公比rとしてar', a, ar と表す (対称形) 3 数列 a,b,cが等比数列⇔ b=ac を利用 (平均形) 等差数列をなす3つの数の表し方は,次の3通り (p.419 参照)。 ① 公差形 a, a+d, a+2d と表す ② 対称形 a-d, a, a+d と表す ③] 平均形 26=a+c を利用 数列 a, b, c が等比数列をなすから b2=ac 429 1 章 ② 等比数列 ・ズ b=-27 実数であるから b=-3 これを①,② に代入して これらからcを消去して 左辺を因数分解して ac=9.2a=c-3 2a2+3a-9=0 (a+3)(2a-3)=0 ① <3 平均形 b=ac を利用。 C. a b c の積が-27であるから ①③ に代入して 数列 c, a, b が等差数列をなすから 2a=c+b 2 abc=-27 ... ③ αはc, bの等差中項。 463=(-3)3 実数じゃない ときは? c2a+3 を ac=9 に代入。 3 これを解いて a=-3, ac=9に代入して 2 α=-3のときc=-3 3 よって (a, b, c) = (-3, -3, -3), a=1/2 のとき c=6 別解 数列 α, b,cが等比数列をなすから,公比をと公比形 a, ar, ar" と -3. 2 すると b=ar,c=ar2 a,b,cの積が27であるから abc=-27 よって a・arar2=-27 すなわち (ar)=-27 ゆえに ar=-3 b=ar=-3であるから ac=9 ① また、数列 c, a, b が等差数列をなすから 表す。 公差0 VATE 1 検討 2 対称形を用いる。 la=br-c=br とすると by '.b·br=-27 2a=c+b よって 2a=c-3 ② ①,② から, c を消去して 2a2+3a-9=0 よって 6=-27 ゆえに b=-3 以下,上の解答と同様に計算する。

解決済み 回答数: 1
数学 高校生

すなわち、7、9、11となっていますが、答えは7、9、11でも11、9、7、のどちらでもいいから好きな方を1つ選んで答えにしてるという捉え方で合っていますか?? また、3数の順序を問われていないから答えは一通りでよい。と解説されているのですが、順序を問われてないからこそ可... 続きを読む

を求めよ。 00 一証明し,その初 p.414 基本事項 を示す。 -るには,(1)と同 例題 4 等差中項 等差数列をなす 3数 419 00000 数列をなす3数があって, その和は27,積は693である。 この3数を求め 等差数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公差 d として a, a+d, a+2d と表す P.414 基本事項 基本12 (形) ② 中央の項α, 公差 d として a-d, a, a+d と表す (対称形) ③ 数列 a,b,c が等差数列⇔ 26=a+c を利用 の表し方のとき, 3つの数の和が (a-d)+a+(a+d)=3a なお、この中央の項のことを 等差中項という。 となり, dが消去できて計算がらくになる。 (平均形) +d +d a-d a a+d 中央の項 答 a, この数列の中央の項を、公差をdとすると、3数はa-d, 12 対物形 a+d と表される。 和が 27, 積が693であるから ((a-d)+a+(a+d)=27 (a-d)a(a+d)=693 3a=27 1617 ① la(a²-d2)=693 ・・・・・・ ② a=9 9(81-d2)=693 ゆえに ①から an=d x1+7 これを②に代入して よってd=417 で よって、 求める3数は ゆえに =-3n+7のn すなわち 7, 9, 11 d=±2 3数をa-da, a+d と表すと計算がら。 OS 81-d2=77 7 9 11 または 11,97 1001 をとげると 3数の順序は問われてい ないので, 答えは1通り

解決済み 回答数: 1
数学 高校生

青チャートの数Bの等比数列の問題で、なんで2a2乗➕3a➖9🟰0になるのかがわからないです。 教えてください。

基本 例題 12 等比中項 00000 3つの実数a, b, cはこの順で等比数列になり,c, a, bの順で等差数列になる。 a,b,cの積が-27 であるとき, a,b,cの値を求めよ。 指針等比数列をなす3つの数の表し方には,次の3通りがある。 ①初項 α,公比rとしてa, ar, ar² と表す ② 中央の項α 公比rとしてar', a, ar と表す ③ 数列 a,b,cが等比数列 ⇔ b2=ac を利用 [類 成蹊大 ] P.427 基本事項 2 基本4 (公比形) (対称形) (平均形) 等差数列をなす3つの数の表し方は,次の3通り (p.419 参照)。 ① 公差形 a, a+d, a +2d と表す ② 対称形 a-d, a, a+d と表す ③ 平均形 26=α+c を利用 数列 a, b c が等比数列をなすから 62=ac 解答 数列 c, a, b が等差数列をなすから 2a=c+b a b c の積が27 であるから abc=-27... ③ ①を③ に代入して 63-27 bは実数であるから b=-3 429 ③ 平均形 b2=ac を利用。 a は c, bの等差中項。 <b³=(-3)³ 1 章 ② 等比数列 これを ①,② に代入して これらからcを消去して 左辺を因数分解して ac=9,20=c-3 2a2+3a-9=0 <c=2a+3 を ac=9に代入。 (α+3)(23)=0 3 これを解いて a=-3, ac=9に代入して 2 a=-3のとき c=-3 よって (a,b,c)=(-3,-3, -3), ( 1, -3, a= =1212 のとき c=6 別解 数列 a,b,cが等比数列をなすから,公比をrと公比形 α, ar, ar” と すると b=ar, c=ar2 a b c の積が27であるから abc=-27 a・arar2=-27 すなわち (ar)=-27 よって ゆえに ar=-3 b=ar=-3であるから ac=9...... ① また, 数列 c, a, b が等差数列をなすから 2a=c+b よって 2a=c-3 ****** ①,② から, cを消去して 2a2+3a-9=0 以下,上の解答と同様に計算する。 表す。 晶検討 ② 対称形を用いる。 a=br-l, c=br とすると br .b·br=-27 よって 6=-27 ゆえに b=-3

解決済み 回答数: 1
英語 高校生

上から5行目の And~easily. の文構造を教えて頂きたいです。justが形容詞でSVCではないのでしょうか?usの位置とthat節のはたらきが分からないです… また、下から2行目のrightの訳がよく分かりません。in the scientific literatu... 続きを読む

S V <なぜ> ~するために 名の~倍形だ。 倍数の表し方 ~times as 形 as ⑧ Fear takes an exposure time (of 250 mill seconds) (to recognize 125 times as long as a smile), makes absolutely no sense, evolutionarily speaking", Martinez says. 66 " which 以上 ☆2分のことを対比して表現するときに用いる whileは2つの意味を持つ!①~の間、②~だけれども≒though など Recognizing fear is fundamental to survival, while a smile isn't necessarily so, but that's how we are wired!" Studies have shown that smiling faces are judged as more familiar than neutral ones.> 名詞節をつくる And it's not just us that can recognize smiles more easily. 66 This is true both for humans and for machines" says Martinez. Although scientists have been studying smiles for about 150 years, they are still (at the stage of trying to categorize types) of smile among the millions) (of possible facial expressions). 63 many One of the fundamental questioness in the scientific literature right now is, how expressions do we actually produce)?" facial 疑問詞も名詞節をつくる 66 says Martinez. Nobody knows, a

解決済み 回答数: 2
数学 高校生

(3)についてです。 なぜa=の式ではなくb=の式を代入するのでしょうか 逆ではダメなのですか?

は0でない とろがともに3の倍数ならば,7a4bも3の倍数であることを証明せよ。 ひと 40 がともに整数であるようなαをすべて求めよ。 a もの倍数で,かつがαの倍数であるとき, aを6で表せ。 aがろ 「αがもの倍数である」ことは, 「bがαの約数である」 ことと同じであり,このとき, 整数を用いて a=bk と表される。このことを利用して解いていく。 (2)αは5の倍数で,かつ40の約数でもある。 ( a, b が3の倍数であるから, 整数k, lを用いて) よって a=3k, b=31と表される 7a-46=7・3k-4・3l=3(7k-4l) 7k-41 は整数であるから,7a-46 は3の倍数である。 A (2) ゆえに,kを整数としてα=5k と表される。 -が整数であるから,αは5の倍数である。 40_40_81001) って 5kk a P.516 基本事項 ■ b は αの約数 a=bk Labの倍数 1年 整数の和差積は整数 である。 <a=5k を代入。 (C) a が整数となるのは, kが8の約数のときであるから k=±1, ±2, ±4, ± 8 したがって a=±5, ±10, 20, ±40 αがbの倍数, bがαの倍数であるから, 整数k, lを 用いて a=bk,b=al a=bk を b=al に代入し,変形すると b = 0 であるから kl=1 とされる。 b(kl-1)=0 負の約数も考える。 <a=5kにkの値を代入。 αを消去する。 k, lはともに1の約数で ある。 4 章 18 約数と倍数 最大公約数と最 k, lは整数であるから k=l=±1 したがって a=±b 倍数の表し方に注意! 上の そば (1) で a=3k, b=3kのように書いてはダメ! あは別々の

未解決 回答数: 1
情報:IT 高校生

マーカー引いたところが分かりません。 まず浮動小数点数とは何か全く知らないので丁寧に教えて下さると嬉しいです。

類題 : 6 例題 6 実数の表現 2 10 進数の 6.75 を,16 ビットの2進数の浮動小数点数(符号部1ビット,指数部5ビット,仮数部 10 ビッ ト)で表すことを考える。 次の文章の空欄に適当な数字を入れよ。OTO (C) 3 2進数の桁の重みは以下のようになる。 ( 整数部 小数点 小数部 8 4 2 1 1/2 1/4 1/8 1/16 よって6.75 は, 6.75=4+2+0.5+ ( ① )のように桁の重みに分解できるので, 6.75 (10)=110.11(g) と2 進数へ変換できる。 次に, 110.11(2) = +1.1011×22となるので, 符号部は(②), 仮数部は(③)となる。 指数部は 2+15=17から( 4 ) となる。 以上より, 求める浮動小数点数は,(⑤)である。 解答 0.25 (2) ③ ④ 10001 1011000000 158921 ⑤ 0 10001 1011000000 (2) ベストフィット n 進数の桁の重みは,次のように求められる。 整数部 小数点 小数部 n³ n² n¹ n° -2 -3 -4 n n n n 解説 指数部は一番小さな指数が0となるように数値を加えて調整する。この例題の場合、指数部は5ビットなので15を加える 例題 7 文字のデジタル化 類題 : 7 2進数00000001001000110100010101100111 2進数 16進数 0 1 右の文字コード表(一部) において,次の問いに答えよ。 0000 2 0 NUL DLE (空白) 3 4 [0001] 1 (1) 「E」に対応する文字コードを16進数で表せ。 SCH DC1 ! 0010 2 STX DC2 |0011| 3 FTX 0120 © A B abc 15 P Q R S 10 7 6 p a r S

未解決 回答数: 1
1/7