学年

教科

質問の種類

数学 高校生

なぜ右の例題では実数条件について考えるのに、左では考えないんですか?ご教授おねがいします🙇

3章 重要 例題 129 領域の変換 00000 | 実数x, y が 0≦x≦1,0≦y≦1 を満たしながら変わるとき,点(x+y, x-y)の 動く領域を図示せよ。 指針 x+y=x 解答 基本110, 118 ①, x-y=Y ② とおくと,求めるのは点(X,Y) の軌跡である。 ここで,x,yはつなぎの文字と考えられるから,x,yを消去して,X,Yの関係式 を導けばよい。 CHART 領域の変換 つなぎの文字を消去して,X,Yの関係式を導く x+y=X,x-y=Yとおくと X+Y X-Y x= 2y= 2 x,yをX,Yで表す。 重要 例 例題 130点(x+y, y) の動く領域 207 00000 実数x, y x2+y2 ≦1 を満たしながら変わるとき,点(x+y, xy) の動く領域 を図示せよ。 指針 x+y=X, xy = Y とおいて, X, Yの関係式 を導けばよい。 ①条件式x2+y'≦1 を X,Yで表す。 →x'+y=(x+y^2-2xy を使うと しかし,これだけでは誤り! X2-2Y≤1 ② x,yが実数として保証されるようなX,Yの条件を求める。 重要 129 →xyは2次方程式2-(x+y)t+xy=0 すなわち f-Xt+Y=0 の2つの解で あるから,その実数条件として 判別式 D=X2-4Y≧0 ① 実数条件に注意 0x1,0≦y≦1 に代入すると X=x+y, Y=xy とおく。 X+Y_ 0≤ 2 -XSYS-X+2 .X-Y 2 よって [X-2Y X 変数を x, yにおき換えて |-xMy≦-x+2 x-2≦x≦x <OX+Y2 解答 x2+y's1から (x+y)²-2xy≦1 すなわち X2-2Y≦1 ⇔-xs-X+2 したがって 0≤X-Y≤2 X² 1 2 ...... ① ⇔ Y≦X かつ また, x, yは2次方程式2-(x+y)t+xy=0 すなわち X-2≦Y ⇔X-2≦x≦X したがって 求める領域は, 右の図の斜線部分。 ただし, 境界線を含む。 ------- <xy 平面上に図示するか ら,X,Yをxyにおき 換える。 X2 ここで f2-Xt+Y=0 の2つの実数解であるから, 判別式をDとす ると D≧0 D=(-X)-4・1・Y=X2-4Y よって, X2-4Y0 から <2数α. β に対して p=a+β, q=aβ とすると, a, βを 解とする2次方程 式の1つは x-px+q=0 1 不等式の表す領域 [e] y ② 4 125x=1 領域の変換 ある対応によって、座標平面上の各点Pに, 同じ平面上の点Qがちょうど1つ定まるとき、 ①,②から 変数を x, y におき換えて 2 2 X² 1 SY≤ X² 検討 この対応を座標平面上の変換といい, Qをこの変換による点Pの像という。 座標平面上の変換によって, 点P(x, y) が点Q(x, y) に移るとき、この変換を f: (x, y) → (x, y) のように書き表す。 2 1-1 Sys* この例題は、座標平面上の正方形で表される領域内の点をf(x,y)(x+y,x-y) に よって変換し,その像の点全体からなる領域 を求める問題である。 具体的な点をこのf で変換してみるとそのようすがつかめる。 右 の図では、変換のようすがつかみやすいよう に2つの座標平面で示した。 34 Ztava y S₁ 1 (0, 0)(0, 0). (1, 0)-(1, 1), ▲ (1, 1)(2, 0), (0, 1)(1, -1), 0 2' (1/12 1/2) (10) 練習 実数x, y が次の条件を満たしながら変わるとき, 点 (x+y, x-y) の動く領域を図 ③ 129 示せよ。 x+y=X, xy=Y が実数であったとしても,それがx+y'≦1 を満たす虚数x,yに対応し た X,Yの値という可能性がある。 例えば,x=- 数), xy = 1 1 +y= 2 y=1/21-1/2 のとき x+y=1(実 2 (実数)で,x2+y2≦1 を満たすが x, yは虚数である。 このような(x,y) を 除外するために 実数条件を考えているのである。 練習 座標平面 130 る 斜線部分。ただし、境界線を含む。 したがって、求める領域は、右の図の -√2 √√2 1とす るとx=2 検討 実数条件(上の指針の2)が必要な理由

解決済み 回答数: 1
数学 高校生

高校数学。領域の問題です。 (3)は2枚目のように赤線まで引いたらダメなのですか?

次の不等式の表す領域を図示せよ。90-8 (1) 3x+2y-6>0 (2)x2+y2+4x-2y0 CHART & SOLUTION 不等式の表す領域 不等号を等号におき換えて,境界線をかく そして、境界線の上側・下側, 内部・外部を考える。 の不動 (3)yx-1 p.168 基本事項 1. 21 (1) まず, y> f(x) の形に変形する。 (2) 左辺を円の方程式の基本形に変形。 (3) 絶対値記号をはずす 場合に分ける x≧1とx<1 の場合分け 解答 (1)不等式を変形すると y> - 12/2x+3 y>f(x) の形に変形。 > であるから, 境界線 よって, 求める領域は 3 を含まない。 3 直線 y=-x+3 の上側の部分で, 右の図の斜線部分である。 ただし, 境 界線を含まない。 0 2 (2) 不等式は (x+2)2+(y-1)2≦5 と変 形できる。 よって, 求める領域は, 円 (x+2)2+(y-1)²=(5) の周およ び内部で,右の図の斜線部分である。 ただし、境界線を含む。 10x 基本形に変形。 中心 (-2, 1), 半径√5の円。 であるから,境界線を 含む。 また、円は原点を 通ることに注意する。 (3) x≧1 のとき y≧x-1 よって、 直線 y=x-1 およびその上 側の部分。 x<1のとき y=(x-1)=-x+1 よって, 直線 y=-x+1 およびその 上側の部分。 0 1 2 x ゆえに、 右の図の斜線部分である。 ただし、 境界線を含む。 絶対値記号の中の式 x-1 が 0 以上か負かで 場合分けする。 inf. 不等式の表す領域を 図示する場合は,境界線を 含むかどうかを明記する。 ≧≦なら境界線を含み, >, <なら境界線を含ま ない。

解決済み 回答数: 2
化学 高校生

化学基礎 滴定曲線についてです。 問2の解説お願いします。

必修 基礎問 33 滴定曲線 次の文章を読み,下の問いに答えよ。 化学基礎化学 帯は,指示薬Aおよび指示薬Bの変色域を表している。 中和点はpHが急激 図1~3は, 中和滴定の際の溶液のpH変化を示している。また、図中の に変化する領域の中であり、酸や塩基の組み合わせにより中和のた 使用できる指示薬が異なる。 図1のような滴定曲線が得られるのは ア 滴定した場合であり、指示 Aおよび指示薬Bとも変色域がpH急変の領域内にあるので,どちらの指示 薬を使っても中和点の滴定量を測定できる。 一方, 図2は イ 滴定した場 合に得られるが,変色域が pH 3.1~4.4の指示薬Bでは中和点をみつけるこ とはできない。逆に,図3の場合には指示薬Aは適さない。 図3は,具体的にはアンモニア水を塩酸で滴定したときに得られる。中和 点の滴定量の半分を滴下した付近 (X点)では,未反応のウと中和で生 成したエのモル濃度はほぼ等しい。 精 る ○指 pH pH pH 14 14 14p 12 12 12- 1001x 10 10 10 A の変色域] 中和点 8 8 8 ●中和点 6 43 「Bの変色域 64 60.14 中和点 2 2 滴定量 図 1 2F 0 滴定量 滴定量 図2 図3 問1 文中のア イについて,次の①~⑧から最も適当な答えを 選び、その番号を答えよ。 強塩基を強酸で (2 強酸を強塩基で 強酸を弱塩基で ③ 弱塩基を強酸で (5) ⑦ 弱塩基を弱酸で 強塩基を弱酸で ⑥ 弱酸を強塩基で ⑧8 弱酸を弱塩基で 問2 文中のウ, エについて,次の①~⑤から最も適当な答えを 選び、その番号を答えよ。 THE 000 H ① 塩酸 2 ④ 塩化ナトリウム 1000 HOT 水酸化ナトリウム THO 15 塩化アンモニウム 3 アンモニア (立命館大)

解決済み 回答数: 1
数学 高校生

(2)番なんですが、最後の∴の後がどうしてtからxにしていいのかわかりません。ただただtの関数にxを入れただけですか??なんか、x 0→π、t π→0で範囲変わるのにいいのかなーって疑問です。 教えてください(;;)🙇🏻‍♀️

10 【2】 f(x)= sinx (0≦x≦x) とする. 次の問いに答えよ. 4- sin²x (1) f(x) の増減を調べ, 極値を求めよ. (2)0≦x≦のときF (πーx) =F(x) を満たす連続関数F(x) に対し, SxF(x)dx=f" (π-x) F(x) dx が成り立つことを示せ. (3) 曲線C:y=f(x) とx軸で囲まれた部分をy軸のまわりに1回転させてできる立 体の体積Vを求めよ. (40点) 考え方 (1) f(x)の導関数の符号を調べて, f(x) の増減を調べましょう. (2) F(x)=F(x) を利用するために, π-x=t とおいて置換積分をしてみましょう. (3)一般に,y=f(x) で表された曲線を境界線にもつ領域のy軸まわりの回転体の体積を求める際, y=f(x) を x=f-l(y) と変形して, y 軸に垂直な断面である円の面積を求めて積分します.本問ではf-l(y) を具体的に求めら れないので,一旦それをx=x1 (y) やx=x2(y) などとおいて立式し, 置換積分法によってxによる積分に持ち込みま しょう.その後, 部分積分法を利用すると(2)が利用できます. 【解答】 f'(x) = cost:(4−sin’x)−sinx.(-2sinxcosx) (4- sin²x)² cosx(4+sin x) (4- sin²x)² よって, f'(x) の符号と cosxの符号は一致 し, f(x) の増減は右のようになる. $4+sinx>0 x 0 ... ... π ゆえに、f(x) の極値は f'(x)- + 極大値 13 π-x=t とおくと, (答) f(x) 0 2013 (4-sin'x)>0 \ 0 dx x 0→> π =-1, dt t π → 0 であるから xF(x) dx = f(x-(x-1)-(-1) dt = f(x-1)^(t) dt .. *xF(x) dx = f(x-x)F(x) dx (8)(1)より曲線C:y=f(x)の概形は右図のよ うになる. C0≦x≦の部分をx=x(y), 2≦x≦の部分をx=x2(y) とおくと, v = [*x(x(9))* dy = [*x(x. (9)* dy V x(y)=xのとき、y=f(x) (0x≦)より、 -13y (証明終わり) ◆【解説】 1° JA C 0 x(y) x2(y) 【解説】 2゜3゜ 一数Ⅲ型 5-

解決済み 回答数: 1
生物 高校生

解説の、赤線を引いてあるところの意味が分かりません💦細胞内でトリプトファンが不足する時はなぜトリプトファンを含むタンパク質を合成出来ないのですか。 お願いします🙇‍♀️

問5 思考力・判断力 トリプトファンオペロンは,細胞内でトリプトファンが不足して いるときにトリプトファン合成酵素を合成して, 細胞内でトリプト ファンを合成できるようにする必要がある。 ここで, 設問文にある UGG コドンは, 表1からトリプトファンを指定するコドンである ことがわかる。 細胞内でトリプトファンが不足するときには,トリ プトファンを含むタンパク質を合成することはできないが,trpE 遺伝子を転写した領域にトリプトファンを指定する UGG コドンが 含まれないことで, トリプトファンが不足していても trpE タンパ ク質を合成することができると考えられる。 したがって, オが正し い。 なお,アイについては, trpE タンパク質はトリプトファン合 成に関わるタンパク質であり, トリプトファンと結合するわけでは ないことから, ともに誤りである。 ウについては, trpE タンパク 質を指定する領域に UGG コドンは含まれないので, trpE タンパ ク質にトリプトファンは含まれていない。 したがって, trpE タン ギー パク質を分解してもトリプトファンを得ることはできないことか ら,誤りである。 エについては, trpE タンパク質はトリプトファ ンが不足するときにはたらくので,トリプトファンがあるときは trpE タンパク質を合成する必要はないことから,誤りである。 問6 CHOO)

解決済み 回答数: 1
1/297