数学
高校生
解決済み

なぜこのように変形できるのですか?

184 重要 例題 116 反転 OP・OQ=(一定) の軌跡 0000 |xy平面の原点を0とする。 xy 平面上の0と異なる点Pに対し, 直線 OP」 点 Q を,次の条件 (A), (B) を満たすようにとる。 (A) OP・OQ=4 |点Pが直線x=1上を動くとき, 点 Q の軌跡を求めて、図示せよ。 【類 大阪市 (B) Q は, 0 に関して Pと同じ側にある。 指針 求めるのは,点Pに連動して動く点Qの軌跡。 基本1 連動形の軌跡 つなぎの文字を消去して,x,yの関係式を導く P(X, Y), Q(x, y) とすると, 2点P Qの関係は 点Qが半直線 OP 上にあるX=tx, Y=ty となる正の実数が存在する このことと条件(A) から, tを消去して, X, Y を x, yの式で表す。 そして、点Pに関 する条件 X=1より, x,yの関係式が得られる。 なお, 除外点に注意。 参 ※質 点 Q の座標を (x, y) とし、点Pの座標を (X, Y) とする。 解答 Qは直線OP 上の点であるから Q(x, y) P(X, Y) X=tx, Y=ty (t は実数) √x2+y2(x)2+(ty)" =4 ただし,点Pは原点と異なるから t=0, (x, y) = (0, 0) 更に, (B) から, t> 0 である。 (A)から 4 ゆえに t(x2+y2)=4 よって t=- かから したがって X=- 4x x2+y2, Y=- x²+ye 22を消去する。 (19)A 4x (−1)=0 点Pは直線x=1上を動くから x2+ye =1(S)AX=1 に X=- 4x x+y ゆえに x2+y2-4x=0 y よって (x-2)'+y2=4 0-(1-)+1 代入する。こう したがって, 求める軌跡は 中心が点 (2,0), 半径が20円。 0 12 ただし, (x,y) ≠ (0, 0) である から, 原点は除く。 -2- ☆注意 本間は、反転の 図示すると、 右図のようになる。(0) (=g=x である。反転について

回答

疑問は解決しましたか?