学年

教科

質問の種類

数学 高校生

(1)と(2)を教えてください。 (2)は(1)の式を書くことが出来なかったので、サッカーの絵を見て数えて答えたため、実際の解き方が分かりません。 数学があまり得意ではないため、分かりやすい解説をお願い致します。

けんたろう:このサッカーボールは正五角形と正六角形でできた多面体だね。 一体このサッカーボー ルには何個の正五角形と正六角形があるんだろう。 数えるのには少し手間がかかるね。 ひさのり:それじゃあ, 正五角形と正六角形の個数をそれぞれ x, y とすれば, サッカーボール の面の数 F は F = (ア) ①と表せる。 また, サッカーボールの頂点の数 V は, ②と表すことができるね。 ... 正五角形に注目し, æのみを用いてV= (イ) けんたろう:であれば, サッカーボールの辺の数 E も考えたいね。 正五角形の1つの頂点には3つの 辺が集まっているからE= (イ) ×3と表せられる? ひさのり:それだと重複して数えちゃってるよ。 適当な数で割って,E= (ウ) ③と表すのが 正しいね。 ① ② ③をオイラーの多面体定理に代入して整理すれば (エ) x-(*) y=-4... ④ けんたろう: オイラーの多面体定理ってなんだっけ?? それよりも、 ④の式だけじゃ答えにたどり着か ないよ。もう1本,とyの関係式が欲しいよ。 ひさのり: オイラーの多面体定理はね, 覚えておかないとね。 それじゃあ関係式をもう1本出そう。 正六角形については1つの正五角形のまわりに5つあるから, 合計 5 だね。 だけどこの 場合、正六角形 (カ) 回数えているからy=(キ) ⑤ けんたろう: ④と⑤から正五角形と正六角形の個数がわかるね。 (1) (ア) 2 (キ)に当てはまる適当な数および文字を答えよ。 (2) サッカーボールの正五角形と正六角形の個数をそれぞれ求めよ。

解決済み 回答数: 1
数学 高校生

⑶教えてほしいです、ちなみに、自分で解いたのが写真3枚目なんですけど、答えは48でした

Date 【5】 図のように正五角形の頂点となる5つの地点 A, B, C,D,Eがある. これらは辺と対角線からなる10本の道 でつながっていて, 頂点間の移動はこれらの道を通って行 われる.なお,道の途中で他の道に移ることはできない. 次の各問いに答えよ. 結果のみではなく, 考え方の筋道も 記せ. B (1) Aから出発し, B, C, D, Eの4地点をちょうど一度 ずつ通ってからAに戻る道順を考える.例えば,以下は 条件を満たす道順のうちの3つである。 C A E A→B→C→D→E→A A→C→E→D→B→ A A→E→D→C→B→A (i) 条件を満たす道順の総数を求めよ. (ii) (i) のうち, C→Dという移動を含む道順の総数を求めよ. (2) Aから出発し, Bだけをちょうど二度通り, C,D,Eは一度だけ通ってAに戻 る道順を考える.例えば,以下は条件を満たす道順のうちの1つである. A→B→C→D→B→E→A ただし, BBのように、同じ点に留まるものは、二度通ったとはみなさない。 (i) 条件を満たす道順の総数を求めよ. (i) (1) のうち, .→B→E→B→・・・のように同じ道を続けて通る移動を含む道順 の総数を求めよ. (3) Aから出発し, B, C,D,Eのうち, 1地点だけをちょうど二度通り,残りの3 地点は一度だけ通ってAに戻る道順を考える.そのような道順のうち, 同じ道を 通らないような道順の総数を求めよ. 1年 駿台6月 ☆BCDEの順列を考えればよいだけ! 4! =4×3×2= 24 (ii) B [CD] E 31=3×2=6. ■(i) ○ ○ ^ ^ ^ 3:x462= 3×2×4 (50点) Cor Dor E となりあわないよう にする =36 先に他のを並べて、 その間を考える!!

解決済み 回答数: 1
数学 高校生

2021②-5 ①蛍光ペンを引いたところの問題でいうところのカキクなのですが、前に出てるaをそのまま2乗してはいけないのですか?答えにはaの2乗=a➕1とあり、確かに途中でウエオのところでaはすでに答えが与えられてるけど、それを2乗したら出てくるはくるのですが、なぜここで... 続きを読む

44 日 第3問~第5問は、いずれか2問を選択し、解答しなさい。 第5問 (選択問題(配点 20 さま 1辺の長さが1の正五角形の対角線の長さをαとする。 (1) 1辺の長さが1の正五角形 OA,B,CiA2 を考える。 第1日程 数学Ⅱ・数学B 45 (2) 下の図のような, 1辺の長さが1の正十二面体を考える。 正十二面体とは, どの面もすべて合同な正五角形であり. どの頂点にも三つの面が集まっている へこみのない多面体のことである。 a A2 C₁ A1 B1 10. 1+30 B2 [C A: 0 B D 110 とされる。キリによ! すべて 4点( ZA,CB=31 CiA1A2 アイとなることから,AA2と BC」 は平行である。ゆえに 面 OABICA2に着目する。 OA」 と A2 B1 が平行であることから OB1=0A2+A2B1=0A2+ OA₁ AA= ウ BIC である。 また に であるから 1 BC1= 1 ウ AA2 T (OA2-OA) ウ で絞り立てみ 正 |OA2OA1|2|AA2|2 正方形ではな =80-80 + a ク また, OAとABIは平行で,さらに, OA 2 と AC も平行であることから に注意するとはない る。 BICI=B1A2+ A20+ OA] + AC1 ウ =- OA-OA2+OA」 + OA2 I - オ OA2- OA₁ 0=ab+adah となる。 したがって 1 I ウ ケ コ OA OA2= + でない を得る。 (数学Ⅱ・数学B第5問は次ページに続 補足説明 ただし、 サ は,文字 αを用いない形で答えること を得る。 (数学Ⅱ・数学B第5問は次ページに続く。) が成り立つ。0に注意してこれを解くと,a= 449-

解決済み 回答数: 1
数学 高校生

最後のトナニなのですが、Kの値がもとまってあとはCH→とかけるだけなのですが、CH→を4として良い理由がわかりません。確かにCHの長さは4なのですが、ベクトルがついているのにそのまま代入しても良いのですか?それど、先に全て二乗してその後に最後、ルートつけるといい感じなのです... 続きを読む

数学II, 数学 B 数学 C (2)(1)の五角形OABCD を平面 OABに垂直な方向に4だけ平行移動することに よって作られる,左下の図のような五角柱 OABCDEFGHI を考える。 IG H √√√5 2√5 3 数学II, 数学 B 数学 C (i) Kは平面 BIM 上の点なので, b, q を実数として MK=6MB+αMi と表すことができる。 よってOK は OK=OM+MK =OM+MB+qMi タ チ ツ pa+ p+q\d+ ē シ シ テ 2 B D 2√5 と表すこともできる。 A B 線分 OE の中点をMとし, 3点 B, I, M を通る平面で五角柱 OABCDEFGHI を切断したときの切り口について考えよう。 以下, OA=d, OD=d, する。 平面 BIM と直線 CH の交点をK ツ の解答群 ⑩ 1++q ① 1+pg 2 1-p+q 31-p-q とおく。 (i) 点Kは直線CH 上の点なので,kを実数として CK=kCH と表すことができる。 よってOK は OK =OC+CK =OC+kCH と表すことができる。 ソ a+ d+ke ③ シア (iii) ③ ④ よりんの値を求めることで トナ CK= =xx であることがわかる。 また,四角柱 ABCD-FGHI が直方体であることを用いると, 平面 BIM と 直線 AF の交点Lについて トナ FL= 二 (数学Ⅱ, 数学B, 数学C第6問は次ページに続く。) であることもわかる。

解決済み 回答数: 1
数学 高校生

なぜ2の最後って積で確率を求めるのですか?

422 重要 例題 56 図形上の頂点を動く点と確率 0000 円周を6等分する点を時計回りの順に A, B, C, D, E, Fとし, 点Aを出発点 として小石を置く。 さいころを振り, 偶数の目が出たときは2, 奇数の目が出た ときには1だけ小石を時計回りに分点上を進めるゲームを続け、最初にAに ちょうど戻ったときを上がりとする。 (1) ちょうど1周して上がる確率を求めよ。 (2) ちょうど2周して上がる確率を求めよ。 指針 さいころを振ることを繰り返すから, 反復試行である。 (1) 1周して上がる → 偶数の回数m, 奇数の回数nの 方程式を作る。 [北海道] 基本52 重要 例題 さいころを続け 率は100 6 数 指針 (ア) 求め (イ)確 pk+1 かし や CH ..... 1,2をいくつか足して6にする。 F 偶 1周目にAにあってはいけない。 E BAはともに5だけ進むから,同じ確率になる。 D (2) 2周して上がる ...... A → F, F → B, B → A と分ける。 このときA→Fと (c) (1.4)のとき 2m+n=6 (1) ちょうど1周して上がるのに, 偶数の目が回 奇数の目がn と 解答 (m,nは0以上の整数) よって (m, n)=(0, 6), (1, 4), (2, 2), (3, 0) これらの事象は互いに排反であるから, 求める確率は ①②③④⑤ 43 ぐききき 5! [14] (2,2)のとき 2 +oC(1/2)(1/2)+(1/2)^(1/2)+(1/2)=1 64 回出ると (2) ちょうど2周して上がるのは,次の[1]→[2] → [3] の順に進む場合である。 [1] A から F に進む5逾[2] F から B に進む (A には止まらない) [3]BからAに進む進む (1) と同様に考えて, [1] ~ [3] の各場合の確率は ①②③④ [1] 2m+n=5から き この場合の確率は (m, n)=(0, 5), (1, 3), (2, 1) E (1/2)+(1/2)(1/2)+oca(1/2)(1/2)=3/2 [2] 偶数の目が出るときであるから,確率は 2.2 [3] 確率は[1] と同じであり よって, 求める確率は 21 × 32 21 23 12 +C 12 [3] BからAに進むと 21 441 5だけ進む。 これは [1] のAからFに進む (5 け進む)のと同じであり × 32 2048 確率も等しい。 さいこ 答 確率を 答 OES ここ PR- Þ 両 練習動点Pが正五角形ABCDE の頂点 A から出発して正五角形の周上を動くものと © 56 る。Pがある頂点にいるとき, 1秒後にはその頂点に隣接する2頂点のどちらか それぞれ確率 1/12 で移っているものとする。 (1)PがAから出発して3秒後にEにいる確率を求めよ。 練習 5 57 (2)PがAから出発して4秒後にBにいる確率を求めよ。 (3)PがAから出発して9秒後にAにいる確率を求めよ。 [類 産能大

解決済み 回答数: 1
1/18