学年

教科

質問の種類

数学 高校生

73.1.2 三角形の合同を示してから、それぞれの線分や角度が等しいことを求めていったのですが、これでも大丈夫ですよね?

414 00000 基本例題 73 三角形の傍接円,傍心 △ABC の ∠B, ∠Cの外角の二等分線の交点をⅠとする。 このとき,次のことを 証明せよ。 (1) Iを中心として, 辺BC および辺AB, AC の延長に接する円が存在する。 F (2) ∠Aの二等分線は, 点Iを通る。 指針▷ (1) 点P が ∠AOB の二等分線上にある点 を利用する。 ⇔点Pが∠AOB の2辺 OA, OB から等距離にある Iから、辺BC および辺 AB, AC の延長にそれぞれ垂線 IP, IQ IR を下ろし、これら の線分の長さが等しくなることを示す。 (2) 言い換えると「∠B,∠Cの外角の二等分線と∠Aの二等分線は1点で交わる」とい うことである。点Iが∠QAR の2辺 AQ, AR から等距離にあることをいえばよい。 なお,(1) での円を△ABCの傍接円といい, 点Iを頂角 A内の傍心という。 解答 I から, 辺BC および辺AB, ACの延長にそれぞれ垂線IP, IQ, IR を下ろす。 (1) IB は ∠PBQ の二等分線であるから MO HA MO A MOS IP=IQ IP=IR ICは∠PCR の二等分線であるから よって IP=IQ=IR また, IP ⊥BC, IQ⊥AB, IRICAであるから, I を中心とし て、辺BC および辺AB, AC の延長に接する円が存在する。 (2) (1) より IQ=IR であるから, 点Iは∠QAR の2辺 AQ, AR から等距離にある。 ゆえに,点Iは∠QAR の二等分線上にある。 したがって,∠Aの二等分線は, 点Iを通る。 練習 0 084 ABCの色 広島修道大 613 基本68 Q 検討 傍心傍接円 10 三角形の1つの頂点における内角の二等分線と、他の2つの頂点におけ る外角の二等分線は1点で交わる。 この点を1つの頂角内の)傍心とい う。また, 三角形の傍心を中心として1辺と他の2辺の延長に接する円 が存在する。 この円を, その三角形の傍接円という。 1つの三角形において,傍心と傍接円は3つずつある。 なお,これまでに学習してきた三角形における外心,垂心,内心, 重心と 傍心を合わせて, 三角形の五心という。 B - I--- BAC 「基 △ 3. 指針 C 解 AF BM よま また 8 7 これ よ E C

未解決 回答数: 1
数学 高校生

237の(3)について質問です。 なぜ、AP=AQが二分のaだと、PQも二分のaと分かるのでしょうか? あと、PD=√3Apになる理由も教えてほしいです。 分かる人いたら教えて欲しいです。 お願いします。

辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 このとき、次の問いに答えよ。 (1) AP+PG の最小値を求めよ。 (2) (1) のとき, ∠APGの大きさを求めよ。 (3) (1) のとき, APGの面積Sを求めよ。 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 <EAK, KAB をそれぞれα, β とするとき, cosa, COS βを求めよ。 Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 きる。 Hは ABCD の重心であるから MH-DM-3-√3 = 2 E 6 -MH²-(43)-(4) - 3 2 AH"=AM²-MH²= 237 1辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD=αのとき (1) この四角錐の高さをαで表せ。 よって AH= F 3 3 実戦編 B A (2) 点Pを辺AD上に点Qを辺AB上にAP=BQ = x となるようにとる。 三角錐 P-AQD の体積を最大にする x を a で表せ。 (3)0=∠QPD とおく。 x が (2)で求めた値のとき, COSA の値とQPDの面積 を求めよ。 香川大) 236 ∠CAE=∠AKE =90° であることに注意。 237 (2) から底面に下ろした垂線をOH, P から底面に下ろした垂線を PH' とす △OAH △PAH' である。 E P F C G 235~237 の解 AE=BC ∠EAC=∠CBE (=∠R) AC=BE より △AEC≡△BCE AK, BLは辺ECを底辺としたときの AK=BL これより AEK (直角三角形の合同条件、斜辺と他 EK=CL ゆえに CL=EK =√AE²-AK²= よってK, LはCE の三等分

回答募集中 回答数: 0
1/6