学年

教科

質問の種類

数学 高校生

二次不等式が解けません この2枚目の自分のやり方がなぜダメなのか教えてください

187 基本事項 01 DO 重要 例題 1122次不等式の解法 (3) 191 次の不等式を解け。 ただし, αは定数とする。 (1) x²+(2-a)x-2a≤0 (2) ax²≤ax 基本110 文字係数になっても,2次不等式の解法の要領は同じ。 まず, 左辺 = 0 の2次方程式を 指針 解く。 それには ① 因数分解の利用 ②解の公式利用 が、ここでは左辺を因数分解してみるとうまくいく。 の2通りある 2次方程式の解α,βがαの式になるときは,との大小関係で場合分けをしてグ ラフをかく。もしくは,次の公式を用いてもよい。 a<βのとき (x-a)(x-B)>0⇔x<a, B<x (xa)(x-B) <0⇔a<x<B (2)x2の係数に注意が必要。 a0a=0,α<0 で場合分け。 CHART (xa)(x-3)の解α, B の大小関係に注意 の場合、左 形に。 に。 -1< ●場合、左の コピー4+50円 ての実数 v>0 (1)x2+(2-α)x-2a≧0から 解答 [1] a<-2 のとき,①の解は a≤x≤-2 [2] a=-2 のとき,① は (x+2)'≤0 よって,解は x=-2 [3] -2<αのとき, ① の解は (x+2)(x-a)≤0 ① [2] [3] x x a a 0 -2 -2≤x≤a 以上から a<-2のとき a≦x≦2 2-4x+10 a=-2のとき 2<αのとき (2) ax≦ax から ax(x-1)≤0. ① 0>(8-)(1 x=-2 -2≦x≦a [1]a>0 のとき, ①から x(x-1)≤0 両辺を正の数αで ときy=l ときy> よって,解は 2010- [2] α=0 のとき,①は 0x(x-1)≦0 これはxがどんな値でも成り立つ。意 よって、は すべての実数 [3] a< 0 のとき, ①から +6 ・軸は共有 これと 下に っては x0,1≦x 以上から x(x-1)≥0 >0 すべて a>0 のとき 0≦x≦1; a = 0 のとき すべての実数; a<0 のとき x≦0, 1≦x 割る。 ( となる。 は 「< または = 」 の意味で, <とのどちらか一方 が成り立てば正しい。 ①の両辺を負の数αで 割る。 負の数で割るから、 不等号の向きが変わる。 注意 (2)について, ax≦ax の両辺をax で割って, x≦1としたら誤り。 なぜなら、 ax = 0 のときは両辺を割ることができないし, ax < 0 のときは不等号の向きが変わ るからである。

解決済み 回答数: 2
数学 高校生

この問題がよく分かりません。 何が分からないのかもわかっていないレベルなので 詳しく教えていただけるとありがたいです。 大雑把な質問で申し訳ありませんがお願いします🙇‍♀️

83 数分解できる。 もち 次式×2次式 よ」とい 解すればよい。 の 指針 与式がx、yの1次式の積の形に因数分解できるということは、 (与式)=(ax+by+c)(px+y+z) 例題 47 因数分解ができるための条件 00000 x2+3xy+2y2-3x-5y+kがxyの1次式の積に因数分解できるとき、定数k の値を求めよ。 また、 その場合に、この式を因数分解せよ。 [東京薬大] 基本46 を利用 =0 とおいて解く の公式。 狐の前の2 (0) 解答 を忘れないよう 数の範囲の因数 ら x= -3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 ==3(y-1)±√y2+2y+9-4k の形に表されるということである。 恒等式の性質を利用(検討参照) してもよいが、 こ そこでは,与式を2次式とみたとき, = 0 とおいたxの2次方程式の解の1 次式でなければならないと考えて、その値を求めてみよう。 ポイントは、解がの1次式であれば、解の公式における内がりについての完 平方式(多項式)”の形の多項式] となることである。 P=x2+3xy+2y2-3x-5y+k とすると P=x2+3(y-1)x+2y2-5y+k P=0をxについての2次方程式と考えると、解の公式か x”の係数が1であるか ら,xについて整理した 方がらくである。 2 2章 解と係数の関係、解の存在範囲 e: と この1=12-(9-4k)=4k-8=0 ゆえに k=2 4 里の因数分 _-3(x-1)+√(+1) -3y+3±(y+1) (y+1)^=ly+1|であ = による。 このとき x= 2 すなわち x=-y+2, -2y+1 ないよう よってP={x-(-y+2)}{x-(-2y+1)} =(x+y-2)(x+2y-1) +x(1+28)るが、土がついているか ら,y+1の符号で分け る必要はない。 (p+4)=(0- 恒等式の性質の利用 検討 2 この2つの解をα, β と すると, 複素数の範囲で はP=(x-α)(x-β) と因数分解される。 Pがx,yの1次式の積に因数分解できるためには,この 解がyの1次式で表されなければならない。 よって,根号内の式y2+2y+9-4kは完全平方式でなけれ 完全平方式 ばならないから, y2+2y+9-4k=0 の判別式をDとする ⇔=0が重解をもつ ⇔判別式 D=0 ると, 1 いない (1)x2+xy-6y-x+7y+k x2+3xy+2y2=(x+y)(x+2y) であるから,与式が x, yの1次式の積に因数分解できると すると,(与式)=(x+y+a)(x+2y+b) ① と表される。 ...... ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+abとなるから, 両辺の係数を比較して a+b=-3,2a+b=-5,ab=k これから,kの値が求められる。 い 歌の 8A 10-1-x+(8-x)(ローズ) 練習 次の2次式がx,yの1次式の積に因数分解できるように、定数kの値を定めよ。 ③ 47 また,その場合に,この式を因数分解せよ。 (8-8) (2) 2x2-xy-3y²+5x-5y+k

解決済み 回答数: 1
数学 高校生

次の様な問題で色々調べたら二乗と一次式で表す?方法と別解みたいに係数比較で解く方法などが入りますがどのやり方が一番いいのでしょうか?

★★★★ 例題 214 4次関数のグラフの複接線 f(x)=x4x8x とする。 (1) 関数 f(x) の極大値と極小値, およびそのときのxの値を求めよ。 (2) 曲線 y=f(x) に異なる2点で接する直線の方程式を求めよ。 思考プロセス (北海道大 ) 《ReAction 接線の方程式は, 接点が分からなければ (t, f(t)) とおけ (2)段階に分ける 曲線 y=f(x) に異なる2点で接する。 例題 209 y=f(x)l 例題 212 x=t における y=f(x) の接線/ が x=t 以外の点で再び y=f(x)に接する。 の方程式とy=f(x) を連立すると x=t 再び接する xxの2次式) 0 x=t 以外の重解 (1) f'(x)=4x12x16x=4x(x+1)(x-4) f'(x) = 0 とおくと x=-1, 0, 4 よって, f(x) の増減表は次のようになる。 x 1 ... 0 *** 4 *** + -128 YA f(x) したがって '(x)- 20 + 0 - 0 -37 0 x=0 のとき極大値 0 x=1のとき極小値 -3 x=4のとき極小値128 x (2) 曲線 y=f(x) 上の点(t, -4-8) における接線 の方程式は、f'(t)=4-12-16 より y-(4-413-813) (4t3-12t2-161)(x-t) y=(4t-12-16t)x-3 +81 +81 ... 1 ① と y=f(x) を連立すると x-4x-8x=(4-12-16t)x - 3t + 8t + 8t (x_t)^{x+(2t-4)x +3t-8t-8}=0 ① が曲線 y=f(x) と x=t以外の点で接するのは x²+ (2t-4)x+3t-8t-8=0 ... ② が x = t 以外の 重解をもつときであるから, ② の判別式をDとおくと D=0 D 4 -=(t-2)2- (3t2-8t-8)=-2t²+4t+12 t-2t-60 より このとき②の重解は t=1±√7 -128 x=t で接するから, (xt) を因数にもつ。 これは, t と異なる。 ここで, tはピー 2t-6 = 0 を満たし 12 4t-4 t2-21-6 4t3-12t2-16t 4t + 8t 4t3 - 8t2-24t - 4t + 8t + 24 -3t+2t-6 -24 -3t+8t³ + 8t² 2-21-6) - 3t + 6t + 18t2 21-102 2t3 42 12t 612+12t 割り算をして,次数を下 げる。 1-2t60 より t=2t+6 よって 4t3-12t2 - 16t =4t(t-3t-4) =4t(-t+2) = 4t +8t =-8t-24+8t = -24 のように次数を下げても よい。 よって, t = 1±√7 のとき 6t+12 +36 -36 4t3-12-16t=(t2-21-6)(4t-4)-24-24 36 +81 +81=(2t-6) (-312+2t-6)-36=-36 したがって, 求める接線の方程式は, ① より y=-24x-36 (別解) 求める接線を y=ax+b... ① とし,2つの接点のx座 標を x = s, t (sキt) とする。 y=f(x) と① を連立 すると x4x8x-ax-b=0 ②は, x= s, をともに重解にもつから, (x-s) (x-t)=0 ··· ③ とおける。 ③は {(x-s) (x-t)}= 0 x^2(s+t)x+{(s+t) +2st}x" ... 2 例 38 5章 14 導関数の応用 {x-(s+t)x+st}=0 -2(s+t)stx+(st) =0 ... ④ ②④の係数を比較すると -4-2(s+t) ... ⑤ -8= (s+t) + 2st ... ⑥ -a=-2(s+t)st ... ⑦ -b = (st) ... 8 1-8=4+2st よって st =-6 ⑤ より s +t = 2 であり, ⑥に代入すると st =-6 よって, ⑦ より a 2.2 (-6)=-24 ⑧ より b=-36 ここで,s, tは2次方程式 X2-2X-6=0 の解であ り X=1±√7 重解ではないから, sキt を満たす。 stを確かめる。 したがって, 求める接線の方程式は y=-24x-36 2t-4 x= 2 =-t+2=1+√7 (複号同順) 練習 214 曲線 y=x(x-4) のグラフと異なる2点で接する直線の方程式を求めよ。 367 p.392 問題214

解決済み 回答数: 1
1/22