学年

教科

質問の種類

数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

数2の質問です! 267の(1)で ~ のところは - の符号をつけて考えないのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

265(1)(与式)=2fxdx5fxdx+3f dx =2.1x1-5.3x²+3.x+C =1/2x2x'+x+C(Cは積分定数) x軸との上下関係をつかむ。 (2) (与式)= 式)= [1/1 t)=2f(3x2-1)dx=2[xx テーマ 121 3 次関数のグラフと画 応用 曲線y=(x+1)(x-1)(x-3) とx軸で囲まれた部分の面積Sを求めよ。 考え方面積の計算では、まずグラフをかく。そして, x 解答 方程式(x+1)(x-1)(x-3)=0を解くと x=1,1,3 グラフは右の図のようになり 1≦xly 20 1≦x≦3 で yo また y=(x+1)(x-1)(x-3) =x3x²-x+3 よって、求める面積Sは S=(x³-3x²-x+3)dx +(-(x³-3x²-x+3))dx =8 練習 265 次の不定積分,定積分を求めよ。 メー =(-4+8+12-2)-(-4-8+12+2) =12 別解 (与式)= =2(8-2)=12 266 (1) 方程式 x(x-3)²=0を解くと x=0.3 グラフは右の図のように なり 0x3y≧0 0 3 よって, 求める面積Sは S=Soxx-3)2dx=f(x) (x3-6x2+9x)dx 9 --+--+- 81 27 == -54+ 2 4 267 (1) 曲線と直線の交点の座標は、 (1) S(2x³- 3-5x2+3)dx (2) S(-x+3x2+6x-1)dx □ 練習 266 次の曲線とx軸で囲まれた部分の面積Sを求めよ。 (2) y=x(x2-4) (1) y=x(x-3)2 (1) y=x-3x,y=-2x 練習 267 次の曲線または直線で囲まれた部分の面積Sを求めよ。 (2) y=x-2x2,y=x2+6x-8 (2) 方程式(x2-4)=0 y を解くと x=-2,0,2 グラフは右の図のよう になり 2xy≧0, 0≦x≦2yMO よって, 求める面積Sは x+Sol- ( -x3+4x)dx =[2]+[ +2 ] =-(4-8)+(-4+8)=8 [参考] y=x(x2-4) のグラフは原点に関して対称 s=5,xx2-4)dx+ {-x(x2-4)}dx =S(-4x)dx+S(- であるから,S=2x2-4)dx としてもよ い。 J-2 x-3x=-2xの解である。 式を整理してxx=0 よって ゆえに (x+1xx-1)=0 x = 0. ±1 グラフは図のように なり -141407 x³-3x-2x 201 x3-3x≤-2x よって, 求める面積Sは s=${(x-3x)-(-2x)dx +(-2x)-(x³-3x)dx =S°(x_x)dx+S^(-x'+x)dx ++ ●演習問題の解答 1 ■考え方 どの文字に のいずれた 1 (与式)= 2つの曲線の共有点のx座標は、方程式 x3-2x2=x2+6x-8の解である。 式を整理して3-3x2-6x + 8 = 0 よって (x-1)(x²-2x-8)=0 (x-1)(x+2)(x-4)=0 ゆえに 2, 1, 4ストー グラフは右の図のよう になり -2≤x≤1T x3-2x2x2+6x-8 1≦x≦4で 2xx2+6x-8 よって, 求める面積Sは -20 =-3(6 =-3(b =-3( =-3 -3a (2) (与 =(b S=S^_^{(x_2x2)-(x2+6x-8)}dx +S, {(x²+6x−8)—(x³—2x²))dx =(x³-3x²-6x+8)dx +S(-x+3x²+6x-8)dx x3-3x2+8x = 2 781

未解決 回答数: 0
1/101