学年

教科

質問の種類

数学 高校生

この問題の(2)について質問です。sinθ=kを満たすθの値が2個存在することは分かったのですがなぜそこから③と②が2点で交わり、また、2点で交わったら4個の解を持つのかが分かりません💦なぜ2点しか交わってないのに4個解を持つのですか?どなたか教えて欲しいです🙇🏻‍♀️

例題118 20 三角比の2次方程式の解の個数 ついて、 **** 0の方程式 2cos'0+sin0+a-3=0 •••••• に 180°とする. (1) ① が解をもつための定数αの値の範囲を求めよ. (2) ①が異なる4個の解をもつときの定数αの値の範囲を求めよ. 考え方例題 87 (p.164~165) の関連問題 「解答 (1) sind=t とおくと, 1 は, 21-12) +t+α-3=0 より 定数を分離して 直線 y=a と放物線y=2t+10t) の共有点をみるとよい。 (2) 0°≦0≦180°のとき sind=t (0≦t<1) となる0は1つのに対して2個あるこ とに注意する. (sin0=t=1のときは 0=90°の1つのみ ) (1) sin0=t とおくと, 1 は, 21-t2)+t+a-3=0 より。 a=2t-t+1 ……①' 0°≦0≦180°のとき, 0≦sin0≦1より, 0≦t≦1 y=2t²-t+1, sin'0+cos20=1より, cos20=1-sin'0 ......(2) とおくと, 定数αを分離する. したがって, y=a ②と③のグラフが, 0≦t≦1 において共有点をもつ. YA 2 ③より, y=2t2-t+1 y=a ①'の解は, ②と③のグ ラフの共有点の座標 t=1 のとき y=2 t=0 のとき y=1 =2(1 − 1)²+1787 よって, 右の図より, ≦a≦2 (2)180°のとき, sin0=k(0≦k < 1)を満た すりの値は2個存在する. したがって、条件を満た すとき、③のグラフの 78 0 11 1 42 sin0=1 を満たす 0は 0=90°の1つのみ YA YA y=k -1 点 (1,2)を除いた部分と ② のグラフが異なる2点で 交わる. -1 XC よって, (1)の図より, 7 <as1 ocus 1 1 x 0≦t<1 において ②と ③が異なる2点で交わる ⇔ ① が 0≦t<1 に 異なる2個の解をもつ ⇔ ①が異なる4個の 解をもつ 方程式f(t)=aではのグラフの共有点をみよ

解決済み 回答数: 1
数学 高校生

解説の意味があまりよく分からず 2枚目の条件で考えていきたいのですが、なぜ成り立たないのでしょうか よろしくお願いします!

基本 例題 125 2次方程式の解と数の大小 (1) 00000 2次方程式x2-2(a+1)x+3a=0が,-1≦x≦3 の範囲に異なる2つの実数解を もつような定数αの値の範囲を求めよ。 [類 東北大 ] 基本 123 124 重要 127 指針 p.192, 194 で学習した放物線とx軸の共有点の位置の関係は、そのまま2次方程式の解 と数の大小の問題に適用することができる。 すなわち、f(x)=x2-2(a+1)x+3α として 2次方程式(x)=0が-1≦x≦3で異なる2つの実数解をもつ ⇔放物線y=f(x) がx軸の1≦x≦3の部分と, 異なる2点で交わる したがって D>0, -1<軸<3, f-1030で解決。 CHART 2次方程式の解と数の大小 グラフ利用 D, 軸, f (k) に着目 解答 この方程式の判別式をDとし, f(x)=x2-2(a+1)x+3a とす る。 方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数 解をもつための条件は, y=f(x) のグラフがx軸の-1≦x≦3 の部分と、異なる2点で交わることである。 -1<軸 <3 yA + したがって、次の [1]~[4] が同時に成り立つ。 [1] D > 0 [2] -1<軸<3 [3] f(-1)≥0 [4] f(3)≥0 [1] 101=(-(a+1)-1・3a=a-a+1=(a-1/2)+12/ よって, D>0は常に成り立つ。 ...... [2] 軸は直線x=α+1で, 軸について (*) -1<a+1<3 すなわち -2<a<2 ...... ① [3] f(-1)≧0から (−1)-2(a+1) (-1)+3a≧0 3 ゆえに 5a+30 すなわち a≧! ****.. 5 [4] f(3) 0 から 32-2(a+1) ・3+3a≧0 012 ゆ -3a+3≥0 すなわち a≦1. ③ ① ② ③ の共通範囲を求めて 3 ≤a≤1 5 注意 [1]の(*)のように、αの値に関係なく、常に成り立つ条件もある。 a+1 -1 3 x

解決済み 回答数: 1
数学 高校生

この問題って右下にあるように定数分離を使っても解けると思うのですが模範解答の解き方も覚えないといけないですか? 定数分離の方が自分的にやりやすいのでもし覚えなくて良かったらその方法だけでやりたいです。

4 第4章 三角関数 Think 10/17x **** 例題 152 三角関数を含む方程式の解の存在条件 OOT とする. 0 の方程式 cos20+asin0+a=0・・・・・・① を満たす 0 が存在するための定数αの値の範囲を求めよ. ( 岩手大・改 ) [考え方 sing とおくと、2倍角の公式を利用して、1の2次方程式として考えることがで きる。 (0) f(1) が同符号のとき f(t) のの係数が正より 区間 ②で③が実数解をもつための条 件は, f(0)>0 かつ f(1)>0 かつ f(t)=0 の判別式をDとすると. D≧0 かつ y=f(t)の軸が区間内 つまり、tの2次方程式の解の存在範囲の問題となるので 2次関数のグラフと軸の である. 共有点を考えるとよい. f(0)=a-1>0より, 解答 a 3 三角関数の加法定理 295 f(0) <0. f(1) < 0 の場合は区間内に解 をもたない。 17 0 a>1 ...... ④ f(1)=2a+1>0より 1 a> 2 8 t D=α-8a +820 より a≦4-2√/24+2/2≦a .......⑥ a-8a +8=0. 4=4+2/2 のとり得る値の範囲に注意しながら、 実数解 tの存在範囲を調べればよいが,そのと 上のようにいろいろな場合が考えられ、場合分けの必要がある場合分けをする ときの着眼ポイントは、「区間の端点の符号」,「軸と区間の位置関係」 「判別式(また は2次関数のグラフの頂点のy座標)」 である. t = sin0 とおくと,00πより 0≦t≦1 .....・・ ② cos20=1-2sin'0=1-2F より ①に代入して, -(1-2f2) + at + α = 0 つまり、 2f+ at+a-1=0 ...... ③ したがって、 ①を満たす 0 が存在するための条件は,区 間②において,tの2次方程式③が少なくとも1つの実数解 をもつこと, つまり ③より f(t)=21+atta-lとお とy=f(t)のグラフが区間②でも軸と少なくとも1つ の共有点をもつことである. (i) (0) (1) が異符号のとき つまり,f(0)f(1) <0 のとき f(0)=a-1 f(1)=2+a+a-1=2a +1 したがって, (a-1)(2a+1)<0 よって、12<a<1 -4<a<0 ......⑦ 軸はto より <<1 4 つまり. 以上(i)~(i)より,求めるa の値の範囲は したがって、④~⑦を同時に満たすαの値は存在しない。 ≦a≦1 Focus 最終的に2次関数の 解の存在範囲における場合分け 48 する。 問題として捉えるこ とができるかがポイ ント 区間の端点の符号で 場合分けを考える. (注)を参照) f(0)>0,f(1)<0 または, f(0) <0. f(1)>0 より 1 t f(0) f(1)<0 f(0)=0 のとき, す でに f=0 が③の解 となるのでf(1) の符 よって a= =1/12 または a=1 号は関係ない. () f(0)=0 または f(1) = 0 のとき つまり,f(0)f(1)=0 のとき (a-1)(2a+1)=0 f(t) =2f+ at+a-l =21++ 第4章 「区間の端点の符号」 「軸と区間の位置関係」 「判別式(または2次 関数のグラフの頂点のy座標)」に着目せよ! 注〉 例題152で 「区間の端点の符号」で場合分けを行ったのは, (i) や (i) の場合は端点の符 号を調べれば,軸や判別式を調べなくても、題意を満たす αの値の範囲を調べること ができるからである. このことは, Focus Gold 数学Ⅰ+Aの第2章 「2次関数」 で学んだ 「解の存在範囲」 の問題と関連している. 注) 「定数分離」という着眼から, 例題152を次のように解くこともできる. 2t2+ at+a-1=0 より 2t-1=-at-a g(t)=2t-1.h(t)=-at-a とすると, ③を満たす が区間②内に存在するのは, y=g(t) と y=h(t) が区 間②において共有点をもつ場合である.このとき, h(t)=-a(t+1) より,y=h(t)は定点(-1, 0) を通 る直線であるから, 右の図より、共有点をもつのは, -15-as y=g(t) 1 =h(t) (0, -1) を通る直線から, より、 1/2sas1のときである。 (1,1) を通る直線まで変化する. 練習 152 とする0の方程式 sin' +acos0-2a-1=0………① を満たす 0 (同志社大 改)

解決済み 回答数: 2