学年

教科

質問の種類

数学 高校生

解答の場合分けがこのようになっている理由がわからないです。なぜ1で分けているのか教えて頂きたいです。

回転 36 xy 平面上の2次曲線を 9x2+2√3xy+7y2 = 60 とする.このとき,次の各問いに答えよ. 215-36 と曲線 C は、原点の周りに角度0(001)だけ回転すると, ax2+by2 = 1 の形になる.0 と定数a, b の値を求めよ. (2) 曲線C上の点と点 (c, -√3c) との距離の最小値が2であると き,c の値を求めよ.ただし, c0 とする. アプローチ 〔神戸大〕 (イ)曲線を回転させようと考えるのではありません。曲線上の点を回転さ せて回転後の点の軌跡を求める感覚です. そこで曲線 C上の点を (x, y), これを回転した点を (X, Y) とし,x,yの関係式から x, y を消去して, X, Y の満たすべき関係式を求めると考えます.つまり x, y を X, Y で表 してC の式に代入するというストーリーです。そのためには (X, Y) = 「(x, y) を 0 回転した点」 という関係式ではなく (x, y) = 「(X, Y) を -0 回転した点」 という関係式を立式しましょう。これをC の式に代入したら出来上がり です. (口)点(x, y) を原点を中心に角 0 だけ回転した点を (X, Y) とすると, X + Yi = (cos 0 +isin0)(x + yi) です.実部と虚部を比較すると となります. X = x cos 0 - y sin 0, Y = xsin0 + y cos 0 (2)では曲線 C 上の点と (c, -√3c)との距離を考えるのではなく,とも に回転させた曲線と点との距離を考えます.

回答募集中 回答数: 0
数学 高校生

こんにちは。この問題なんですが 解説を読んでも全然分かりません… 教えてくださる方いませんか??🙇‍♀️🙇‍♀️

3 高次方程式 109 ると余り (機大改) 余 x)を 解答 think 例題 54 割られる式の決定 **** + 2x +3 で割ると x +4余り、+2で割ると余るような多項式 P(x) で,次数が最小のものを求めよ。 P(x) を4次式(x+3)(x+2) で割った余りR(x)は3次以下の式である。 P(x)=(x+2x+3)(x+2) (商)+R(x) x+2x+3で割ると 割り切れる. x+2x+3で割ると、余りは、 1次以下の多項式 P(x)をx2+2x+3で割った余りと一致する.一 P(x) を4次式 (x2+2x+3)(x2+2) で割ったときの商を Q(x), 余りをR(x) とすると, P(x)=(x2+2x+3)(x+2)Q(x)+R(x) と表せ R(x)は3次以下の式である。 184+1- また、 ①において,P(x) を x2 + 2x +3で割ると, (x2+2x+3)(x+2)Q(x)はx2+2x+3で割り切れるから, P(x) をx'+2x+3で割った余りx+4は, R(x) をx'+2x+3で割った余りと一致する. つまり,R(x)=(x2+2x+3)(ax + b)+ x +4 割る式が4次式なの で、余りは3次以下 おく。 第2章 ·② とおける. 同様に,P(x) を x+2で割った余りが1であるから,CC R(x)=(x+2)(cx+d)-1 ・・・③ おける. ② ③より #JJD (x'+2x+3)(ax+b)+x+4=(x+2) (cx +d-1 が成立し,左辺と右辺をxの降べきの順に整理すると, ax+(2a+b)x2 + (3a +26+1)x +36 +4 =cx3+dx2+2cx+2d-1 R(x)は3次以下の 式だから 2次式で 割ったときの商は1 次以下の多項式とな る. これはxの恒等式であるから, a=c,2a+b=d, 3a+26+1=2c, 36+4=2d-1 これらを a, b について解くと, よって、②より, c, dを消去すると a=1.6=-1 a+26=-1 R(x)=(x2+2x+3)(x-1)+x+4= x + x2 + 2x + 1 x²+x²+2x+10 ①より、 P(x) = (x2+2x+3)(x+2)Q(x)+x + x' + 2x + 1 そして,P(x)の次数が最小になるのは Q(x)=0のとき である. よって、 求める多項式は, P(x)=x'+x'+2x+1 4a-b=5 Q(x)=0 のとき, P(x) は4次以上の 式となる。 us

未解決 回答数: 0
数学 高校生

詳しく解説してください

重要 21 等式を満たす多項式の決定 00000 多項式f(x) はすべての実数xについてf(x+1)-f(x) =2x を満たし,f(0)=1 であるという。 このとき, f(x) を求めよ。 (一橋大 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+cとおいて進めることが 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺 2x と比較するこ →f(x)はn次式であるとして, f(x)=ax+bx-1+...... (a≠0, n≧1) とおいて できるが,この問題ではf(x) が何次式か不明である。 とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 f(x)=1 | この場合は,(*)に含 f(x) =c(cは定数) とすると, f(0)=1から 解答 これはf(x+1)-f(x) =2x を満たさないから,不適。 よって,f(x)=ax+bx"-1+...... (a≠0, n≧1)(*) とす 0=1+v-xl ると f(x+1)-f(x) 1+x=4 =a(x+1)"+6(x+1)"-'+…………-(ax"+bxn-1+…………) =anx-1+g(x) ただし,g(x)は多項式で,次数は n-1より小さい f(x+1)-f(x)=2xはxについての恒等式であるから、最 高次の項を比較して ①から れないため、別に考えて いる。 (x+1)^ =x+nCixcm-1+nCzx-2. のうち, a(x+1)+1-ax" 次の項は anx-1で りの頃は2次以 n-l=1 ・①, an=2. ②なる。 ....... xの次 係数を比較。 n=2 ゆえに、②から a=1 このとき,f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよ よって =2x+b+1 2.x+b+1=2x この等式はxについての恒等式であるから 結果は同じ b+1=0 係数比較法。 すなわち b=-1 木ゴル したがって f(x)=x-x+1

回答募集中 回答数: 0