学年

教科

質問の種類

数学 高校生

角ATC=角TSP=角TBSがイコールになる理由を詳しく教えていただきたいです。 接弦定理がよくわかりません。 よろしくお願いします。

日本 例題 図のように、大きい円に小さい円が点Tで接してい まるで小さい円に接する橋線と大きい円との交 点をA,Bとするとき, ∠ATS と ∠BTSが等しい ことを証明せよ。 00000 [神戸女学院大 ] A S /B 399 CHART & THINKING 接線と弦には 接弦定理 p.394 基本事項 2 点Tにおける2つの円の接線と, 補助線 SP (Pは線分AT と小さい円との交点)を引き, 接 弦定理を利用する。 接弦定理を用いて, 結論にある ∠ATS や ∠BTS と等しい角にどんど ん印をつけていき,三角形の角の和の性質に関連付けて証明することを目指そう。 答 点における接線を引き、 図のよう に点Cを定める。 3章 10 円と直線、2つの円 また、線分 AT と小さい円との交点 をPとし,点Sと点Pを結ぶ。 接点Tに対して, 接線 TCは小さい 円, 大きい円の共通接線であるから S B 2円が接する→2円 の共通接線が引ける。 ∠ATC= ∠TSP=∠TBS ① ◆接弦定理 接点Sに対して,接線 AB は小さい円の接線であるから 接弦定理 ∠ASP = ∠ATS ② ATSB において <BTS + <TBS = ∠AST ∠AST = ∠ASP + ∠TSP ここで m _∠BTS + ∠ TBS = ∠ASP + ∠ TSP ③ ①③から ゆえに、②から m <BTS = ∠ASP <BTS = ∠ATS ■(三角形の外角)=(他の 2つの内角の和)

未解決 回答数: 0
数学 高校生

角ATC=角TSP=角TBSがイコールになる理由を詳しく教えていただきたいです。 接弦定理がよくわかりません。 よろしくお願いします。

日本 例題 図のように、大きい円に小さい円が点Tで接してい まるで小さい円に接する橋線と大きい円との交 点をA,Bとするとき, ∠ATS と ∠BTSが等しい ことを証明せよ。 00000 [神戸女学院大 ] A S /B 399 CHART & THINKING 接線と弦には 接弦定理 p.394 基本事項 2 点Tにおける2つの円の接線と, 補助線 SP (Pは線分AT と小さい円との交点)を引き, 接 弦定理を利用する。 接弦定理を用いて, 結論にある ∠ATS や ∠BTS と等しい角にどんど ん印をつけていき,三角形の角の和の性質に関連付けて証明することを目指そう。 答 点における接線を引き、 図のよう に点Cを定める。 3章 10 円と直線、2つの円 また、線分 AT と小さい円との交点 をPとし,点Sと点Pを結ぶ。 接点Tに対して, 接線 TCは小さい 円, 大きい円の共通接線であるから S B 2円が接する→2円 の共通接線が引ける。 ∠ATC= ∠TSP=∠TBS ① ◆接弦定理 接点Sに対して,接線 AB は小さい円の接線であるから 接弦定理 ∠ASP = ∠ATS ② ATSB において <BTS + <TBS = ∠AST ∠AST = ∠ASP + ∠TSP ここで m _∠BTS + ∠ TBS = ∠ASP + ∠ TSP ③ ①③から ゆえに、②から m <BTS = ∠ASP <BTS = ∠ATS ■(三角形の外角)=(他の 2つの内角の和)

回答募集中 回答数: 0
数学 高校生

数Aの問題です (2)の5行目 ∠AHP=90°-∠BAH=∠ABH…② の所、 なぜ∠AHPは90°から∠BAHを引くのか分かりません! 教えてください🙇‍♀️

鋭角三角形ABCがある。頂点Aから辺BCに下ろした垂線の足をHと さらにHから辺AB, ACに下ろした垂線の足をそれぞれP, Qとす る. (1)A,P,H,Q は同一円周上にあることを示せ 15 22 P, B, C, Q は同一円周上にあることを示せ. 精講 この問題では,「内接四角形の定理の逆」 を使ってみましょう. あ る四角形の「対角の和が180°」であれば,その四角形は円に内接 することがわかります. 練習問題4(2)で見たように, 「対角の和が180°」であ ることは「ある内角がその“対角の外角” と等しい」ことと同じであることも 頭に入れておくといいでしょう. 解答 (1) ∠APH + ∠AQH=90°+90°=180° であるから、 内接四角形の定理の逆より 四角形APHQ P に内接する.つまり,A, P,H,Qは同一円周上 にある. 11 (2) A, P. H, Q は同一円周上にあるので, 円周角 B H A の定理より, EZAQP=ZAHP...... ∠AQP ∠AHP また,∠AHB=90° ∠APH=90°より, ∠AHP=90°-∠BAH = ∠ABH ...... ② TOP ①,② より ∠AQP=∠PBC. 四角形 PBCQ B H は、1つの頂点の内角がその 「対角の外角」と等しいので、 内接四角形の 理の逆より、四角形 PBCQは円に内接する. したがって, P, B, C.Q 同一円周上にある. コメント 1 (2)は, 連想をつなぐことがかなり難しい問題です. こういう問題では,「 う方向で考えていくとい

解決済み 回答数: 1
数学 高校生

三角関数の問題なのですが、解説3行目の式でsin2・A+B/2とあるのですが2と1/2の部分を打ち消してsinA+Bとしてはいけないのですか?教えて頂きたいです。

(2)△ABC において,次の等式が成り立つことを証明せよ。 - A B sin A+sin B+sin C=4 cos COS COS C 2 2) AOR /p.255 基本事項 1, 2 重要 167、 指針(2)△ABCの問題には, A+B+C= (内角の和は180°)の条件がかくれている。 A+B+C=πから、最初にCを消去して考える。 そして,左辺の sin A + sin B に 和積の公式を適用。 1 (1) (7) sin 75° cos 15°- = (sin(75°+15°)+sin(75°-15°)} 2 解答 1 = 2 (1) sin 75°+sin 15°=2sin- COS 95 2 2 =2sin 45°cos 30°=2•· (sin 90° + sin 60°)=(1+√3)2+ √3 75°+15° 75°-15° √2√3 √6 12072012 (822 4 TAOR = () cos 20° cos 40° cos 80°= 0500 {cos 60°+cos(-20°)}cos 80° 1/1 == +cos 20° cos 80°- 20°)cos = 4 1/1 1 cos 80°+ cos 20° cos 80° 2 0-01 1 11 = cos 80°+ • 4 22 cos 80°+ {cos 100°+cos(-60°)}= 1 1 = co 4 cos 80°+ cos (180°-80°)+ (2) A+B+C="から て表し、 兀 ゆえに sin C=sin(A+B), cos 2 よって sin A+sin B+sin C=2sin 1 4 4 1 1 cos 80°-1 cos 80° + 1 = 1 8 С=π-(A+B) COS 4 8 8 A+B A+B)=sin cos 2 = cos(7/7 COS 80010203 A+B A-B 2 2sin する 1 cos 100°+ 8 A+B COS + sin 2. 2 2 2 おきかえ A+ A+BA-B =2sin 2 (c COS +cos (A+B) 2 2 C =2 cos -2008.2005 cos(-) A B cos COS 2 2 -A +=4 cos- A A B C COS COS 2 2 2 CO

解決済み 回答数: 1