学年

教科

質問の種類

数学 高校生

(3)を解いてみましたが、答えが違いました。どこで間違えたのでしょうか。 また、(-2/3)^(n-1)の場合、マイナスは偶数乗か奇数乗かが固定されていないと、括弧の外に出せないという考え方であっていますか?

10 和と一般項の関係, 3 項間漸化式 - 数列{an}が, a=-1,22ar=3an+1-24-1 (n=1, 2, 3, ...)を満たすとき, (1) az を求めよ. (2) 3an+2-70n+1+20m=0を示せ. (3) am を求めよ. an=S-S1 (山形大工/一部省略) S” を含む漸化式は, 「an=S-S-1 (n≧2)」......☆を用いて, S を消去し,4 だけの漸化式に直す. ☆は一般にはn≧2のときのみに通用することに注意 (n=1 とするとn-1=0 になってしまう!). n=1のときは, α = S」 を用いる。 an+2+pan+1+gan=0 an+2+pan+1+ga=0の一般項を求めるには,r' + pr+g=0の解α,βを 用いる. 解と係数の関係より, か=-(a+β), q=aB. よって, an+2-(a+β)an+1+αBa=0. これを an+2-αan+1=B(an+1-αan), an+2-Ban+1=α (an+1-Ba) と変形する. α=βのときは,an+2-αan+1=α (an+1-αan)より, an+1-4a=an-1 (a2-aa)として, an+1=αan+san-1 (s=az-aa1). これをα+1で割り, bn=alα" とおくと {bm} は等差数列になる. 解答 Sn=ax とおくと,2S=3an+1-24-1 (1) ① n=1 とすると, 2S1=3a2-241-1 S=q=-1だから, -2=3a2+2-1 ∴. a2=-1 (2) ①のnをn +1 にすると, 2Sn+1=3an+2-2an+1-1 ②-①より, 20+1=34n+2-34n+1-2an+1 +2an :.34n+2-7an+1+2an=0 (3) (2)より, an+2 7 2 13an+1+1/30m=0 [右の傍注に注意し] ③を変形して 1 an+2-24n+1=1/22 (an+1-2an) ④, an+2 (ant1-20),ant2-1/30nt1-2 (0mts-1230円) \1 1\n-1 an+1- ←S+1-Sn=an+1 7 ③ rr+ x+2=0の解 --- 3 (2) (11/23)により ....5 1 x=2. 3 ⑥④より{an+1-2cm} は公比 1/3 の 等比数列. 2-1 ...... 7 a-(—)" (az−2a1) = ( )" (−1+2)=(3)- =(1/1) 3 ④より, an+1-2an= ⑤より, an+1一 an=2n-1 a2 12-130-20-(02/24)-20-1(-1+1/3)-(-/3/3) 2 =2" よって, 3 n-1 ・2"-1- 10 演習題 (解答は p.76) 2Sn2 数列{a} は,q=1, an= (n=2, 3, 4, ...) を満たす. 2Sn+1 ただし, Sn=a+az+... +an である. (1)a2 を求めよ. (2) SS-1 を用いて表せ. (3) S (2) 前文に反しか らを消去する. C (芝浦工大) (3) 11を参照。

回答募集中 回答数: 0
数学 高校生

例題75.2 私が書いた波線部は、y以外は◯回微分を( ◯ )というふうに書かないからd/dxのk乗というふうに書いているのですか??

2 基本 例題 75 第n 次導関数を求める (1) nπ (1) y=sin2x のとき,y)=2"sin(2x+ 2 nを自然数とする。 00000 sin(x+ であることを証明せよ。 /p.129 基本事項 重要 76, p.135 参考事項 (2) y=x”の第n 次導関数を求めよ。 指針 yan) は,yの第n次導関数のことである。そして,自然数nについての問題である から, 自然数nの問題 数学的帰納法で証明の方針で進める。 (2)では, n=1,2,3の場合を調べてy() を推測し,数学的帰納法で証明する。 注意 数学的帰納法による証明の要領 (数学B) [1] n=1のとき成り立つことを示す。 n=k+1のときも成り立つことを示す。 =kのとき成り立つと仮定し, [2] nπ (1)y(n)=2"sin2x+ 2 ① とする。 解答 [1] n=1のとき y'=2cos2x=2sin2x+ トル)であるから,①は成り立つ。 kл [2]n=k のとき,①が成り立つと仮定すると y = 2* sin(2x+ n=k+1のときを考えると,②の両辺をxで微分して d 2 kл _y(k)=2k+1cos2x+ ( D dx 2 ゆえに yk2'''sin(2x++1)=2*+sin{2x+(k+1)x} よって;n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて ① は成り立つ。 (2) n=1,2,3のとき,順に _y'=x'=1,y"=(x2)"=(2x)'=2・1,y" = (x3)"=3(x2)"=3・2・1 したがって,y(n)=n! ...... ① と推測できる。 [1] n=1のとき y=1! であるから, ① は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると y(k)=k! すなわち dk dxkx*=k! →(ス n=k+1のときを考えると, y=xk+1 で, (x+1)'=(k+1)xであるから dk k+ dk (d²xx*+1) = d² * ((k+1)x^} dockdx y (k+1)=- =(k+1)- dk dxk /dxkx=(k+1)k!=(k+1)! よって, n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて①は成り立ち 次の関数の第n次導関数を求めよ (2) y=^ y(n)=n!

回答募集中 回答数: 0