学年

教科

質問の種類

数学 高校生

この問題の(2)の考え方がわからないです。まったく理解できないので解説噛み砕いて教えてもらいたいです🙇‍♀️🙇‍♀️

ak **** 題 206 反復試行(6) 最大確率 1個のさいころを13回続けて投げるとき, 6の目がん回出る確率をP する.このとき,次の問いに答えよ.ただし, 0≦k≦13 とする. (1) Pl, Pk+1 をkの式で表せ. (2) Ph が最大であるkの値を求めよ. 司 (2) Pk と Pk+1 の大小関係 (Pr> Pk+1, P<Pk+i) を調べる. (1) 13 回の試行で, 6の目が回出るとき, 6の目以外は「6の目が出ない」 13-k は「6の目が出る」 の余事象 IS (2) (13-k) 回出るから, P₁= »C₂(1)(2)" Pk=13Ck 同様に, 0≦k≦12 のとき, Pk+1=13Ck+10 + P1+1 PR 1k+1/5\13−(k+1) 6 6 13! (k+1)! (12-k)! \ 6 13! k! (13-k)! 6 1 1 6 X k+1 1 5 13-k 6 1 \k+1/5 6 5 タ) (1) (2) 1 Pk+1 13-k Pk 5(k+1) =13Ck+10 13-k 5(k+1) \12k \13-k 1\k+1/5 6 となり, よって,k=2 のとき最大となる. - ≧1 を解くと, よりk1のとき, Ph+11 つまり Pr<P+1 PR 4 k≤3=1.33... Pk+1 < 1 のとき, (i)より, k>1.33... Pk 12-k Pk+1はPkのkに +1 を代入すると よい. (k+1)!= (k+1).k! (13-k)! =(13-k)(12-k)! 1 6(k+1) k= × =1/3のとき より 2のとき,Pk>Pk+1 (i), (ii)より,k=0 のとき Po<P,k=1のとき Pi<P20123 k=2のとき P2P3, k=3のとき P3> Pa, P<P, <P2>P3> PA>......>P13 6(13-k) 5 Pk=Pk+1 となるが. k, k+1が整数とな らないので不適 おおよそ下の図 1213 k 具体的に代入して書 き並べる. PR+1>Ph P+11 (大小比較は、差をとるか比をとる ) PR AB を示すのに, A-B>0 を示す (差をとる) 方法がよく用いられるが,両辺が のときは, 比をとって1と比べる方法も便利である.

回答募集中 回答数: 0
数学 高校生

(2)の(i)の考え方を解説お願いします🙇🏻‍♀️書き込みは無視してください

数学Ⅰ・数学A 第3問 (選択問題) (1) 袋Aを用いて, 次の操作を行う。 操作1 手順① 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 41 8182 (配点20) 赤玉6個,白玉4個の合計10個の玉が入っている袋Aがある 48 61-49 される確率は 4 (i) 手順①で2個の赤玉が取り除かれる確率は と白玉が1個ずつ取り除かれる確率は 袋Aから無作為に2個の玉を取り出し, 色を見ずにその玉を取り除 く。 手順② 手順①を行った後, 袋Aから無作為に1個の玉を取り出して色を記 録し、 元に戻す試行を2回行う。 A カ キ Wave 10. つ取り除かれていた条件付き確率は である。 (i) 手順②で赤玉と白玉が1回ずつ記録される確率は 62 (ii) 手順①で2個の赤玉が取り除かれ、 かつ手順②で赤玉と白玉が1回ずつ記録 by r Ď エオ サシ スセ ア イ 255 -3 - 24- である。 手順②で赤玉と白玉が1回ずつ記録されたとき, 手順①で赤玉と白玉が1個ず である。 ブザ 4 17 15 19 1521-1 そ であり、手順①で赤玉 ク ケコ K Corak 453 21-1 Tostas である。よって、 office 33-45 (数学Ⅰ・数学A 第3問は次ページに続く。) 834 To: 70 5:55 45 248 4515 Y (2) nを自然数とする。 袋Aを用いて, 次の操作2を行う。 一操作2 袋Aから無作為に1個の玉を取り出して色を記録し、 元に戻す試行をn回行う。 (i)n=10 とする。 操作 2 を行ったとき, 赤玉がん回記録される確率を P(k=0, 1,.., 10) と表す。 太郎さんと花子さんは, Paが最大となるようなkの値について考察してい る。 4515 太郎:Pが最大となるkの値を求めたいけど、 すべてのkについて Ph を求めるのは大変だね 花子:k=0, 1, ..., 9に対して, Pk と Path との比を考えてみたらどう かな。 k=0, 1, …, 9に対して Ph+1= Ph k+タチ テ 数学Ⅰ・数学A ツ k+ が成り立つので, Pk <Pk+1 が成り立つようなんの最大値は たがって, Phはk=ナのとき最大値をとる。 125 (ii)n=2023 とする。 操作 2 を行ったとき, 赤玉がん回記録される確率を Qk(k=0, 1, ..., 2023) と表すと, Qはk=ニヌネノのとき最大値をとる。 128 -25- ト である。 し 125 この問題冊子を裏返して必ず

回答募集中 回答数: 0