学年

教科

質問の種類

数学 高校生

解答の95+12x>100+12(20-x) になるのがわかりません。95と100は重さで12xと12(20-x)は、球の数のはずなのに足すのはなぜですか?

59 1 ◎基本2 なるだろうか? (2) も同様。 AxB の形に A>0, A=0, で場合分け。 基本 例題 32 1次不等式と文章題 下 Aの箱の重さは95g,Bの箱の重さは100gである。 1個12gの球が20個あ り,これらをAとBに分けて入れたところ,Aの箱の方が重かった。そこで 基本30 Aの箱からBの箱に球を1個移したところ、今度はBの箱の方が重くなった。 最初,Aの箱には何個の球を入れたか。 CHART & SOLUTION 文章題の解法 ① 変数を適当に定め、関係式を作って解く ②解が問題の条件に適するかどうかを吟味 最初,Aの箱の球をx個としたときのAとBの重さを比較した関係式を作る。 次に,Aの箱の球を1個減らし、Bの箱の球を1個増やしたときの重さを比較した関係式を 作る。こうしてできる2つの不等式を連立させて解けばよい。 なお, xは自然数であることに注意する。 解答 となるためには,最大 とき 0 を代入して すべての実数x の範囲を定 Bは (20-x) 個 最初,Aの箱にx個の球を入れたとすると して0.x=0である A,Bの重さを比較して 95+12x > 100+12(20-x ) 05Aの方が重い。 245 整理して 24x>245 よって x> 24 正の数なので、 の向きはそのまま Aの箱から1個減らし, Bの箱に1個増やしたとき A,Bの重さを比較して 95+12(x-1) <100+12(21-x) ← Aは (x-1) 個, Bは(20-x+1) 個 ←Bの方が重い。 1章 1次不等式 整理して 24x<269 よって は負の数なので、 x<- 24② である 269 の向きは逆にな 245 ①と②の共通範囲を求めて 269 ·<x<· 24 24 245 24 ≒10.2, 269 24 ≒11.2 xは自然数であるから x=11 ◆解の吟味。 したがって,最初Aの箱に入れた球は11個である。 2 Ic

解決済み 回答数: 1
数学 高校生

この問題で、下の方の最後の条件を確かめる式で 10-8<10-2√15<20、2<10+2√15<10+8 の意味がわかりません。教えてください

基本 例題 80 2次方程式の応用 右の図のように, BC=20cm, AB=AC,∠A=90° の三角形ABCがある。 辺 AB, AC上にAD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き、その交点をそれぞれF,G とする。 00000 135 D D. E チャ 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 B F G CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように、変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、面積の式を =20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 3章 9 2次方程式 答 0 (S-)(S). FG=x とすると, 0 <FG <BC であるから 0<x< 20 S=S= A ① また, DF=BF =CG であるから D E 2DF=BC-FG 30% $50 = [] 定義域 ← ∠B=∠C=45° であるか ら,△BDF, CEGも直 20-x よって DF= 2 B F G C 角二等辺三角形。 30 = [s] 長方形 DFGE の面積は DF •FG=- 20-x. x 2 20-x ゆえに x=20 2 整理すると これを解いて =10±2√15 したがって FG=10±2√15 (cm) 係数が偶数 共 ここで, 02√158 から よって、この解はいずれも ① を満たす。 10-8<10-2√/15<20, 2<10+2√/15<10+8 解の吟味。 02√15=√60<√64=8 単位をつけ忘れないよう x2-20x+40=0 .D. x=-(-10)±√(-10)2-14026'

解決済み 回答数: 2
数学 高校生

0<t<6になるのは何故ですか? 内接しているのは4つ角のみですよね?

めよ。 項 3 ■最 意。 日本 187 最大・最小の文章題(微分利用) 00000 半球に内接する直円柱の体積の最大値を求めよ。 また, そのときの直 円柱の高さを求めよ。 CHAT & SOLUTION 文章題の解法 Wom 最大・最小を求めたい量を式で表しやすいように変数を選ぶ 円柱の高さを、例えば 2t とすると計算がスムーズになる。 変数のとりうる値の範囲を求めておくことも忘れずに。 このとき、直円柱の底面の 半径は62-12 面積はπ(√62-122(36-12) したがって、直円柱の体積はtの3次関数となる。 基本186 3 2 開答 02t<12 直円柱の高さを 2 とすると 0<t<6 ある 含ま 最 るまと と 直円柱の底面の半径は √62-12 て ◆三平方の定理から。 ここで,直円柱の体積をyとすると y=(v36-12)2.2t =(36-t2)・2t=2π(36t-t3) を tで微分すると y'=2z(36-3t2)=-6(-12) =-6(t+2√3) (t-2√3) 0<t<6 において, y'=0 となるの (直円柱の体積) _=(底面積)×(高さ) dy y'で表す。 dt #P はt=2√3 のときである。 よって, 0<t<6 におけるy の増減表は右のようになる。 ゆえに,yt=2√3 で極 大かつ最大となり、その値は 2{362√√3-(2√3)}=2.2√3(36-12)=96√3 また、このとき,直円柱の高さは t 0 23 6 定義域は 0<t <6 であ るから,増減表の左端, v' + 0 y > 極大 2.2√3=4√3 したがって 最大値 96√3 π, 高さ 4√3 右端のyは空欄にして おく。 t=2√3 のとき √62-12=2√√6 よって、 直円柱の高さ。 底面の直径との比は 4√3:4√6=1: 2 百太限

解決済み 回答数: 1