学年

教科

質問の種類

数学 高校生

ここの単元での証明苦手なんですが、ポイントとかってありますか、??🙇‍♀️

AB=8,BC=6,CA=4である△ABCにおいて,∠Aの二等分線と辺 ーマ 38 角の二等分線と比(1) 標 準 する。 このとき, BD, BE の長さを求めよ。 BCとの交点をD, ∠Aの外角の二等分線と辺BCの延長との交点をEと え方 BD: DC=AB: AC, BE: EC=AB: AC となることを利用。 ADは∠Aの二等分線であるから BD: DC=AB: AC=8:4=2:1 2 2+1 -BC= -×6=4 答 よって BD= 3 AEは∠Aの外角の二等分線であるからB BE: EC=AB:AC=2:1 よって, BE: BC=2:1 となるから 12 三角形の辺の比 159 よって 8 6 D 分線と辺BCとの交点をD, ∠Aの外角の二等分線と辺BC の延長との交 練習 112 AB=6,BC=5, CA=4である△ABCにおいて,∠Aの二等 点をEとする。このとき, BD, BE の長さを求めよ。 ...... 4 BE=2BC=2×6=12 答 テーマ 39 角の二等分線と比(2) △ABCの辺BCの中点をMとし, ∠AMB と ∠AMCの二等分線が辺 応用 AB, AC と交わる点をそれぞれD, E とする。 このとき, DE // BCである ことを証明せよ。 考え方 DE // BC を証明するには, AD: DB=AE: EC を示せばよい。 解答 △AMB において, MD は∠AMB の二等分線で MA: MB=AD: DB あるから △AMCにおいて, ME は ∠AMCの二等分線で MA: MC=AE: EC あるから MBMC であるから、①,②より AD: DB=AE: EC DE // BC終 B M E 第2章 図形の性質 113 △ABC の ∠B, ∠Cの二等分線が辺AC, AB と交わる点をそ これぞれE, D とする。 DE // BC のとき, △ABCは二等辺三角形であるこ ETAA++ +

回答募集中 回答数: 0
数学 高校生

この問題で、延長線を使わなくてはいけない理由はなんですか?仮定で、△ABCの辺BCをAB:ACに内分するって言っているので、∠Aの二等分線⇒BP:PC=AB:ACが成り立つからAPは∠Aの二等分線である、という証明ではダメなのですか?

000 Sluts ABCの辺BC を AB : AC に内分する点をPとする。このとき, APは∠A の二等分線であることを証明せよ。 例題 72 角の二等分線の定理の逆 問題文の内容を式で表すと,次のようになる。 指針 p.448 基本事項 2 定理1(内角の二等分線の定理) の逆である。 BP: PC=AB: AC ⇒ APは∠Aの二等分線 ( ∠BAP=∠CAP) △ABCにおいて、辺BAの延長上に点D ACAD となるようにとる。 つまり, 線分の比に関する条件から, 角が等しいことを示すことになるが, 線分の比を 扱うときには,平行線を利用するとよい。 ∠Aの二等分線BP : PC=AB AC の証明 (p.448 解説)にならい, まず辺 BAのAを越える延長上に, AC=AD となるような点Dをとることから始める。 別解 ∠Aの二等分線と辺BCの交点をDとして, 2点P, D が一致することを示す。 なお、このような証明方法を同一法または一致法という。 p.453 における三角形の重心の証明でも同一法を用いている。 ゆえに SISAKOLA Camar BP:PC=AB:ACのとき, BP : PC=BA : AD から平行線と線分の比の性質 AP//DCを三角形の重心と の逆 ∠BAP=∠ADC ∠PAC=∠ACD ACAD から ∠ADC=∠ACD よって ∠BAP=∠PAC すなわち, APは∠Aの二等分線である。 別解 辺BC上の点Pが BP: PC=AB:AC B P AB:AC=BD:DC BP:PC=BD:DC DI を満たしているとする。 ∠Aの二等分線と辺BCの交点をDとすると, 内角の 二等分線の定理により TOP p.448 基本事項2 ② あ CHURCO AS IMAG ROCLAAS TÄ したがって, APは∠Aの二等分線である。 HOA B ONOTRE 平行線の同位角、錯角は それぞれ等しい。 MAS △ACD は二等辺三角形。 ①②から 6. FADLOWE よって,PとDは辺BCを同じ比に内分するから一致す 同一法 る。 DP C 451 GROMAE CÓRKA 704 が成り立つ。下の練 3章 3 1 三角形の辺の比、五心

回答募集中 回答数: 0
数学 高校生

解答のOM⊥BCになる理由が分かりせん。教えてください💦

EBCに下ろした垂線を り,線分 CD が円の直径 p.406 基本事項 ① ② 円に関する定理や性質 (*) ある。) フェ 中点連結定理 コ点2つで平行と半分 DBC, ∠DACは半円の に対する円周角 問題は, △ABC が鈍角 三のときも成り立つ。 90° または ∠B=90° の 角形のときは (2) の四 できない。 利用)。 0 (TRIANO) も利用。 =∠CAHであ MAA 050 基本例題12 重心 外心垂心の関係 正三角形でない △ABCの重心G,外心O,垂心Hは一直線上にあって,重心は 外心と垂心を結ぶ線分を,外心の方から1:2に内分することを証明せよ。なお, 基本例題 71 の結果を利用してもよい。 p.406, 407 基本事項 ①1, ②, ④4 指針 証明することは,次の [1], [2] である。 [1] 3点 G, 0, Hが一直線上にある。 これを示すには,直線 OH上に点Gがあることを示せばよい。 それには, OH と中線 AM の交点を G′として, G′とGが一致することを示す。 [2] 重心 G が線分 OH を1:2に内分する,つまり OG: GH=1:2をいう。 AH // OM に注目して,平行線と線分の比の性質を利用する。 …… すなわち 練習 . 右の図において,直線 OH と △ABC の 中線 AMとの交点を G′ とする。 AH⊥BC, OM IBCより, AH// OM であるから AG' G'M=AH : OM 72 =20M:OMBI B MAD" +4BD"-2A (G) =2:1 SBD ⓘ TAM は中線であるから, G′ は△ABC の重心G と一致する。 よって,外心 0,垂心 H, 重心Gは一直線上にありA HG : OG = AG:GM=2:1> OG:GH=1:2 OPT" # C=AD'+12 検討 三角形の外心,内心、重心,垂心の間の関係 心,外心の性質から。 0. GH U18 08,201 2009 基本例題71 の結果から。 M A ①外心は三角形の3辺の中点を結ぶ三角形の垂心である (練習 72)。 円劇・阿 ②重心は3辺の中点を結ぶ三角形の重心である(練習70) 内 ③ 正三角形の外心,内心,重心,垂心は一致する (練習 71)。 したがって, 正三角形ではオイ ラー線は定義できない。 Acti (1) 検討 (この例題の直線OH) を 外心,重心,垂心が通る直線 オイラー線という。ただし 正三角形ではオイラー線は定 義できない。下の 検討 ③ 参 照。 (1) PUTO DAA △ABCの辺BC, CA, ABの中点をそれぞれL, M, N とする Oは 413 3章 10 三角形の辺の比、五心

未解決 回答数: 1
物理 高校生

(3)をわかりやすく教えてください🙇‍♀️✨

基本例題 2 速度の合成 流れの速さが2.0m/sのまっすぐな川がある。 この川を、静水上を4.0m/sの速さで進む船で 移動する。 60 m 72m (1) 同じ岸の上流と下流にある, 72m離れた点A と点Bをこの船が往復するとき,上りと下り に要する時間 [s], [s] をそれぞれ求めよ。 8 (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0の値を求めよ。 ◆(3) (2)のとき, 川幅60m を横切るのに要する時間 t [s] を求めよ。 指針 (2) 船(静水上) の速度と川の流れの速度の合成速度の向きが、 川の流れと垂直になればよい。 調圏 (1) 上りのときの岸に対する船の速度は [注] 川を横切る船は, BAの向きに 4.0+(-2.0)=2.0 へさきの向きとは 95 60° 72 異なる向きに進む。 m/sだから = 36s 2.0 (3) 合成速度の大きさを 4.0m/s 下りのときの岸に対する船の速度は [m/s] とすると, A→Bの向きに 4.0+2.0=6.0m/s だから = 12s 直角三角形の辺の比より v=2.0×√3m/s 72 6.0 この速さで 60mの距離を進むので 60 60x√3 =10√3s 2.0×√3 2.0×3 (2) 船が川の流れに対して直角に進むの で、右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が 川の流れと垂直になる。ここで, △PQR は辺の比が1:2:√3の直 角三角形である。よって8=60° ここで,31.73 として t=10×1.73=17.3≒17s [注 √3=1.732... や, 2 = 1.414…. など の値は覚えておこう。 2.0m/s 4,5,6 解説動画 2.0m/s V 7.09 P2.0m/s

回答募集中 回答数: 0