学年

教科

質問の種類

数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

微分法の接線の問題です。 写真2枚目の右上の「a≠0は極値をもつための条件」とありますが、なぜa=0だと極値を持つことができないのでしょうか?問題でa>0という条件がそもそもあるからだとしても、なぜわざわざa≠0と書いているのか分かりません! 教えて頂きたいです!🙇‍♂️

96 接線の本数 曲線 C:y=-x上の点をT(1,ピー1)とする。 〇 (1) 点Tにおける接線の方程式を求めよ. (2) 点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ。ただし,a>0, b≠α-a とする. (3)(2)のとき、2本の接線が直交するようなα, bの値を求めよ。 精講 のパターン 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ます、だから,(1)の接線に A(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 95 注で学習済みです. 3) 未知数が2つあるので, 等式を2つ用意します。 で 1つは(2)で求めてあるので, あと1つですが,それが 「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数(84) ですから、 2つの接点における微分係数の積 = -1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3-1)(x-t) y=(3t2-1)x-2t3 (2) (1) の接線はA(a, b) を通るので 6=(3t2-1)a-213 2t-3at2+a+b=0 .....(*) (*) が異なる2つの実数解をもつので, g(t)=2t3-3at2+a + b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, (極大値)×(極小値) =0であればよい, g(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから 186 (t,t³-t) A(a,b)) 95注 R!!

未解決 回答数: 1