数学
高校生

微分法の接線の問題です。
写真2枚目の右上の「a≠0は極値をもつための条件」とありますが、なぜa=0だと極値を持つことができないのでしょうか?問題でa>0という条件がそもそもあるからだとしても、なぜわざわざa≠0と書いているのか分かりません!
教えて頂きたいです!🙇‍♂️

96 接線の本数 曲線 C:y=-x上の点をT(1,ピー1)とする。 〇 (1) 点Tにおける接線の方程式を求めよ. (2) 点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ。ただし,a>0, b≠α-a とする. (3)(2)のとき、2本の接線が直交するようなα, bの値を求めよ。 精講 のパターン 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ます、だから,(1)の接線に A(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 95 注で学習済みです. 3) 未知数が2つあるので, 等式を2つ用意します。 で 1つは(2)で求めてあるので, あと1つですが,それが 「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数(84) ですから、 2つの接点における微分係数の積 = -1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3-1)(x-t) y=(3t2-1)x-2t3 (2) (1) の接線はA(a, b) を通るので 6=(3t2-1)a-213 2t-3at2+a+b=0 .....(*) (*) が異なる2つの実数解をもつので, g(t)=2t3-3at2+a + b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, (極大値)×(極小値) =0であればよい, g(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから 186 (t,t³-t) A(a,b)) 95注 R!!
153 Ja=0 lg(0)g(a)=0 Ja +0 [(a+b)(b-a+α)=0 b≠a-a,a>0 だから,a+b=0 (3) (2) のとき (*)より, t2(2t-3a) = 0 3a a0 は極値をもつ ための条件 2本の接線の傾きはf(0), f (32) だから,直交する条件より ƒ'(0) ƒ (3a)=- (-1)(27 a²-1)=- 2 8 a²== 27 a>0より,a= 2√6 2√6 b=- 9 9 参考 ポイント 3次関数のグラフに引ける接線の本数は 接点の個数と一致する 実は, 3次関数のグラフに引ける接線の本数は以下のようになるこ とがわかっています. 記述式問題の検算用やマーク式問題で有効で す 3次曲線Cの変曲点 (89)における接線をと するとき ・斜線部分と変曲点からは1本引ける ・Cと上の点(変曲点を除く) からは2本引ける ・青アミ部分からは3本引ける 2 C

回答

疑問は解決しましたか?