学年

教科

質問の種類

数学 高校生

なぜこの問題において、t-bx+cとするんですか? どのように考えればt-bx+cという式導けるんですか どなたかお願いします🙏

数学Ⅰ 数学A 第2問 (配点 30) 〔1〕 飲料メーカーAは, 販売店Bとの取引の際, 取引の数量に応じて商品Cの取 引価格を変化させている。 これを知った太郎さんは,メーカー Aと販売店Bと の取引における商品Cの (取引の数量) と (取引の価格)との関係について 過 去のデータを調査し、下の調査結果のようにまとめた。 以下, (取引の数量)を x (L), (1Lあたりの取引の価格)(円)とする。 調査結果 Ixtを図1のように表した。 xとtのデータを表す6つの点(x,t) は 2 点P (55,175), Q (70, 150) を通る直線付近にすべてあることがわかる。 このことから,xとtの関係を、 図2のような2点P Qを通る直線を 表す 1次関数と考える。 ただし, x, tは正の実数とする。 t L 180 た 170 160 1Lあたりの取引の価格 P. · の150 Q 格140 (円) 130 40 50 60 70 x 取引の数量 (L) 図1 .P (55,175) Q(70, 150) 図2 Ⅱ 商品Cの製造費用をαx (円)とする。ただし, α は正の実数とする。 以下,次のような方針に基づくものとする。 方針 a Ⅲ 商品Cの在庫の管理上, (取引の数量) x を x 85 とする。 ⅣV 販売店B は、 商品Cの (1Lあたりの取引の価格)を抑えたいので、 180 とする。 -8 (数学Ⅰ 数学A第2問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

ZP-3 ソタチツ ソタチツがわかりません。前に書いてある誘導にしたがうんだろうなということまではわかったのですが、誘導の言いたいこともわからず、xとt がごちゃこぢゃしてた最終的に0<a<=1/2の時を求めると思うのですが何をしたら良いのかわからず悩んでます。 どなたかす... 続きを読む

数学ⅡI, 数学 B 数学 C 数学Ⅱ 数学 B 数学 [2] (1) α, k 実数とし, αは0でないとする。 ○(k)=f(at-1)at [zat-to/2aピード h(k)=. )=(at (at-1) dt [Lat-t] = 2a-2-(take *) である。 <a=1/2 のとき, f(t)\dt=[ ソ であるから f(t) \dt=37 - 2 a+ ツ 2 94-2 とする。それぞれについて右辺の定積分を計算すると =2a-2-ak-k a> 1> 1/12 のとき,f(t)\dt= = テ であるから a g(k)= k - k S² \ ƒ (t) \dt = ト + ナ a- = a サ である。 セ -g(k) したがって, (*)より α = ヌ となり, f(x) は求められる。 である。 h(k) = 32 (2)次の等式を満たす 1次関数 f(x) を求めよう。 f(x)=xff(t)\dt-1 Solf (t) dt は正の定数であるから *f(t) dt = a(a>0) ソ の解答群 g(2) ①/-g(2) ②ん(2) ③ - h(2) テ の解答群 (*) とおくと, f(x) = ax-1 である。 また,f(x) = 0 を満たすxの値はである。 a ff(t) \dt について考える。 (数学II, 数学B, 数学C第3問は次ページに続く。) A 9 g (1)+(1/1) -(1/2)+(1/1) ® 29 (1) ⑧ 1 -9(1) G 92h (1) <-15-

解決済み 回答数: 2
数学 高校生

複素数の問題です (1)の誘導があるので、(2-1)は解けるのですが、 (1)の誘導がない状態で、この問題が出てきた時は(1)のように考えて解くしかないのでしょうか 他の解法があったら教えて欲しいです

a- 原点を0とする複素数平面上に, 0 と異なる点A(a),および, 2点 0, A を通る直線がある . (1) 直線に関して点P(z) と対称な点をP'(z') とするとき, z==z が成り立つことを示せ (2) α=3+iとする. β=2+4i, y=-8+7i を表す点をそれぞれB, Cとおく. (2-1) 点Bの直線に関して対称な点をB' (B') とする. B' を求めよ. a (22) 線分 OA上の点Q (w)について, ∠AQB=∠CQO が成り立つときのwを求めよ. 原点を通る直線Iに関する折り返し 実軸に関する対称点はすぐに分かる (バーをつけるだけ。2z)ので,lが実軸に重なるように 0 を中心に回転さ せて考える.1 (z軸を回転したもの)に関して対称な位置にあるP(z), P'(z')については,0回転を表す複素数をw とすると, P, P' を -0 回転した (九工大工) ya P(z),l A, •P'(z) Q *Q (1/1). α (2/12) 00 w が実軸に関して対称であるから,ととらえる キ w w ことができる. 解答 () x (1)arga=0 とおくと, P, P' を0のまわりに0回転して得られる2点Q, 上図を参照. Q'は実軸に関して対称である. 恋した a=|al (coso+isin0) であるから, 0回転を表す複素数は, a (=w とおく ) |a| よって、ユーズ = z'=w. : w a- -2 ← w a a a ÷ = \a\ a w w W w 3+i (2) (2-1) (1)KI, B'=B= 3-i a (22) B'とBはに関して対称であるから, (2-4i)=4-2i w 10-10i 3-i (10-10i) (3+i) 10 =(1-i) (3+i)=4-2i C(Y) y ∠AQB' = ∠AQB=∠CQO α, B, y, B' の具体的な値から, 右図のようにな り 3点 B' QCは同一直線上にある. よって, w=(1-s)β'+sy (sは実数 ) w=(1-s) (4-2i)+s(-8+7i) =4-12s+(9s-2) i QはOA上にもあるから, w=tα=t(3+i)=3t+ti (tは実数) とおける.これらが等しいから, 4-12s=3t, 9s-2=t 10 s= t= 39 4 13 12 4 w=t(3+i)= . + -i 13 13 B(β) A(a) B'(B') Q(w) OQ= (1-s) OB'+sOC 4-12s=3(9s-2)

解決済み 回答数: 1